forked from hpcaitech/Open-Sora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
278 lines (240 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
A minimal training script for DiT using PyTorch DDP.
"""
import argparse
import os
from functools import partial
import torch
import torch.distributed as dist
from colossalai import launch_from_torch
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.logging import get_dist_logger
from colossalai.nn.lr_scheduler import CosineAnnealingLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from open_sora.diffusion import create_diffusion
from open_sora.modeling import DiT_models
from open_sora.modeling.dit import SUPPORTED_MODEL_ARCH, SUPPORTED_SEQ_PARALLEL_MODES
from open_sora.utils.data import (
create_video_compressor,
load_datasets,
make_batch,
preprocess_batch,
)
from open_sora.utils.plugin import ZeroSeqParallelPlugin
#################################################################################
# Training Helper Functions #
#################################################################################
def configure_backends():
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
for ema_p, p in zip(ema_model.parameters(), model.parameters()):
ema_p.mul_(decay).add_(p.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def save_checkpoints(booster, model, optimizer, ema, save_path, coordinator):
os.makedirs(save_path, exist_ok=True)
booster.save_model(model, os.path.join(save_path, "model"), shard=False)
booster.save_optimizer(optimizer, os.path.join(save_path, "optimizer"), shard=True)
if coordinator.is_master():
ema_state_dict = ema.state_dict()
for k, v in ema_state_dict.items():
ema_state_dict[k] = v.cpu()
torch.save(ema_state_dict, os.path.join(save_path, "ema.pt"))
dist.barrier()
#################################################################################
# Training Loop #
#################################################################################
def main(args):
"""
Trains a new DiT model.
"""
# Step 1: init distributed environment
launch_from_torch({})
coordinator = DistCoordinator()
logger = get_dist_logger()
configure_backends()
# Step 2: set up acceleration plugins
plugin = ZeroSeqParallelPlugin(sp_size=args.sp_size, stage=2, precision="fp16")
booster = Booster(plugin=plugin)
if coordinator.is_master():
os.makedirs(args.checkpoint_dir, exist_ok=True)
os.makedirs(args.tensorboard_dir, exist_ok=True)
writer = SummaryWriter(args.tensorboard_dir)
# Step 3: Create video compressor
video_compressor = create_video_compressor(args.compressor)
model_kwargs = {
"in_channels": video_compressor.out_channels,
"seq_parallel_group": plugin.sp_group,
"seq_parallel_mode": args.sp_mode,
"seq_parallel_overlap": args.sp_overlap,
"model_arch": args.model_arch,
}
# Step 4: Create DiT and EMA
model = DiT_models[args.model](**model_kwargs).to(get_current_device())
patch_size = model.patch_size
ema = DiT_models[args.model](**model_kwargs).to(get_current_device())
update_ema(ema, model, decay=0)
requires_grad(ema, False)
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
# configure gradient checkpointing
if args.grad_checkpoint:
model.enable_gradient_checkpointing()
# Step 5: create diffusion pipeline
diffusion = create_diffusion(
timestep_respacing=""
) # default: 1000 steps, linear noise schedule
# Step 6: setup optimizer (we used default Adam betas=(0.9, 0.999) and a constant learning rate of 1e-4 in our paper):
opt = HybridAdam(model.parameters(), lr=args.lr, weight_decay=0)
# Step 7: Setup dataloader
dataset = load_datasets(args.dataset)
dataloader = plugin.prepare_dataloader(
dataset,
batch_size=args.batch_size,
collate_fn=partial(
make_batch,
video_dir=args.video_dir,
pad_to_multiple=args.sp_size,
use_pooled_text=args.model_arch == "adaln",
),
shuffle=True,
drop_last=True,
)
lr_scheduler = CosineAnnealingLR(
opt, args.epochs * len(dataloader) // args.accumulation_steps
)
logger.info(f"Dataset contains {len(dataset)} samples", ranks=[0])
# Step 8: setup booster
model, opt, _, dataloader, lr_scheduler = booster.boost(
model, opt, dataloader=dataloader, lr_scheduler=lr_scheduler
)
if args.load_model is not None:
booster.load_model(model, args.load_model)
if args.load_optimizer is not None:
booster.load_optimizer(opt, args.load_optimizer)
logger.info(
f"Booster init max device memory: {get_accelerator().max_memory_allocated() / 1024 ** 2:.2f} MB",
ranks=[0],
)
# Step 9: Train
num_steps_per_epoch = len(dataloader) // args.accumulation_steps
for epoch in range(args.epochs):
dataloader.sampler.set_epoch(epoch)
with tqdm(
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
total=num_steps_per_epoch,
) as pbar:
total_loss = torch.tensor(0.0, device=get_current_device())
for step, batch in enumerate(dataloader):
batch = preprocess_batch(
batch,
patch_size,
video_compressor,
pad_to_multiple=args.sp_size,
model_arch=args.model_arch,
)
video_inputs = batch.pop("video_latent_states")
mask = batch.pop("video_padding_mask")
t = torch.randint(
0,
diffusion.num_timesteps,
(video_inputs.shape[0],),
device=video_inputs.device,
)
loss_dict = diffusion.training_losses(
model, video_inputs, t, batch, mask=mask
)
loss = loss_dict["loss"].mean() / args.accumulation_steps
total_loss.add_(loss.data)
booster.backward(loss, opt)
if (step + 1) % args.accumulation_steps == 0:
opt.step()
opt.zero_grad()
lr_scheduler.step()
update_ema(ema, model)
all_reduce_mean(total_loss)
pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"})
if coordinator.is_master():
global_step = (epoch * num_steps_per_epoch) + (
step + 1
) // args.accumulation_steps
writer.add_scalar(
tag="Loss",
scalar_value=total_loss.item(),
global_step=global_step,
)
pbar.update()
total_loss.zero_()
# Save DiT checkpoint:
if args.save_interval > 0 and (
(step + 1) % (args.save_interval * args.accumulation_steps) == 0
or (step + 1) == len(dataloader)
):
save_path = os.path.join(
args.checkpoint_dir, f"epoch-{epoch}-step-{step}"
)
save_checkpoints(booster, model, opt, ema, save_path, coordinator)
logger.info(f"Saved checkpoint to {save_path}", ranks=[0])
get_accelerator().empty_cache()
final_save_path = os.path.join(args.checkpoint_dir, "final")
save_checkpoints(booster, model, opt, ema, final_save_path, coordinator)
logger.info(f"Saved checkpoint to {final_save_path}", ranks=[0])
logger.info(
f"Training complete, max device memory: {get_accelerator().max_memory_allocated() / 1024 ** 2:.2f} MB",
ranks=[0],
)
if __name__ == "__main__":
# Default args here will train DiT-XL/2 with the hyperparameters we used in our paper (except training iters).
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", type=str, choices=list(DiT_models.keys()), default="DiT-S/8"
)
parser.add_argument(
"-x", "--model_arch", choices=SUPPORTED_MODEL_ARCH, default="cross-attn"
)
parser.add_argument("-d", "--dataset", nargs="+", default=[])
parser.add_argument("-v", "--video_dir", type=str, required=True)
parser.add_argument("-e", "--epochs", type=int, default=10)
parser.add_argument("-b", "--batch_size", type=int, default=4)
parser.add_argument("-g", "--grad_checkpoint", action="store_true", default=False)
parser.add_argument("-a", "--accumulation_steps", default=1, type=int)
parser.add_argument("--sp_size", type=int, default=1)
parser.add_argument(
"--sp_mode", type=str, default="ulysses", choices=SUPPORTED_SEQ_PARALLEL_MODES
)
parser.add_argument("--sp_overlap", action="store_true", default=False)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--save_interval", type=int, default=20)
parser.add_argument("--checkpoint_dir", type=str, default="checkpoints")
parser.add_argument("--tensorboard_dir", type=str, default="runs")
parser.add_argument(
"-c", "--compressor", choices=["raw", "vqvae", "vae"], default="raw"
)
parser.add_argument("--load_model", default=None)
parser.add_argument("--load_optimizer", default=None)
args = parser.parse_args()
main(args)