diff --git a/crates/core_arch/src/x86/sse.rs b/crates/core_arch/src/x86/sse.rs index 3d4471ba36..1b6839f2a5 100644 --- a/crates/core_arch/src/x86/sse.rs +++ b/crates/core_arch/src/x86/sse.rs @@ -1365,6 +1365,15 @@ pub unsafe fn _mm_sfence() { /// Gets the unsigned 32-bit value of the MXCSR control and status register. /// +/// Note that Rust makes no guarantees whatsoever about the contents of this register: Rust +/// floating-point operations may or may not result in this register getting updated with exception +/// state, and the register can change between two invocations of this function even when no +/// floating-point operations appear in the source code (since floating-point operations appearing +/// earlier or later can be reordered). +/// +/// If you need to perform some floating-point operations and check whether they raised an +/// exception, use an inline assembly block for the entire sequence of operations. +/// /// For more info see [`_mm_setcsr`](fn._mm_setcsr.html) /// /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr) @@ -1372,6 +1381,10 @@ pub unsafe fn _mm_sfence() { #[target_feature(enable = "sse")] #[cfg_attr(test, assert_instr(stmxcsr))] #[stable(feature = "simd_x86", since = "1.27.0")] +#[deprecated( + since = "1.73.0", + note = "see `_mm_getcsr` documentation - use inline assembly instead" +)] pub unsafe fn _mm_getcsr() -> u32 { let mut result = 0_i32; stmxcsr(&mut result as *mut _ as *mut i8); @@ -1401,6 +1414,16 @@ pub unsafe fn _mm_getcsr() -> u32 { /// * The *denormals-are-zero mode flag* turns all numbers which would be /// denormalized (exponent bits are all zeros) into zeros. /// +/// Note that modifying the masking flags, rounding mode, or denormals-are-zero mode flags leads to +/// **immediate Undefined Behavior**: Rust assumes that these are always in their default state and +/// will optimize accordingly. This even applies when the register is altered and later reset to its +/// original value without any floating-point operations appearing in the source code between those +/// operations (since floating-point operations appearing earlier or later can be reordered). +/// +/// If you need to perform some floating-point operations under a different masking flags, rounding +/// mode, or denormals-are-zero mode, use an inline assembly block and make sure to restore the +/// original MXCSR register state before the end of the block. +/// /// ## Exception Flags /// /// * `_MM_EXCEPT_INVALID`: An invalid operation was performed (e.g., dividing @@ -1509,6 +1532,10 @@ pub unsafe fn _mm_getcsr() -> u32 { #[target_feature(enable = "sse")] #[cfg_attr(test, assert_instr(ldmxcsr))] #[stable(feature = "simd_x86", since = "1.27.0")] +#[deprecated( + since = "1.73.0", + note = "see `_mm_setcsr` documentation - use inline assembly instead" +)] pub unsafe fn _mm_setcsr(val: u32) { ldmxcsr(&val as *const _ as *const i8); }