forked from pyscf/pyscf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FEATURES
246 lines (181 loc) · 7.04 KB
/
FEATURES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
* Hartree-Fock
- Non-relativistic restricted open-shell, unrestricted HF (~5000 basis for
serial version, ~30000 basis in MPI mode)
- Scalar relativistic HF
- 2-component relativistic HF
- 4-component relativistic Dirac-Hartree-Fock
- Density fitting HF
- Second order SCF
- General J/K build function
- DIIS, EDIIS, ADIIS and second order solver
- SCF wavefunction (RHF, UHF, GHF) stability analysis
- Generalized Hartree-Fock (GHF)
* DFT
- Non-relativistic restricted, restricted open-shell, unrestricted Kohn-Sham
(~5000 basis for serial version, ~30000 basis in MPI mode)
- Scalar relativistic DFT
- Density fitting DFT
- General XC functional evaluator (for Libxc or XcFun)
- General AO evaluator
- VV10 NLC functional for finite size systems
- range-separated hybrid features for RKS and UKS, including
> Analytical nuclear gradients
> Second order SCF
> Hessian and frequency
> TDDFT
> TDDFT nuclear gradients
> NMR
* TDSCF/TDDFT
- TDA (and density-fitting TDA) for RHF, UHF, RKS and UKS methods
- TDHF (and density-fitting TDHF) for RHF and UHF methods
- TDDFT (and density-fitting TDDFT) for RKS and UKS methods
- TDA nuclear gradients for RHF, UHF, RKS and UKS methods
- TDHF nuclear gradients for RHF and UHF methods
- TDDFT nuclear gradients for RKS and UKS methods
- Natural transition orbital analysis
- direct-RPA (no exchange, aka TDH)
- direct-TDA (TDA without exchange)
* GW methods
- G0W0 approximation
* General CASCI/CASSCF solver (up to ~3000 basis)
- State-average CASCI/CASSCF
- State-specific CASCI/CASSCF for excited states
- Multiple roots CASCI
- Support DMRG as plugin FCI solver to do DMRG-CASSCF
- Support FCIQMC as plugin FCI solver to do FCIQMC-CASSCF
- Support Selected CI algorithm as plugin FCI solver to do SHCI-CASSCF
- UCASSCF
- Density-fitting CASSCF
- DMET-CAS and AVAS active space constructor
- CASCI and CASSCF analytical nuclear gradients
* MP2 (up to ~200 occupied, ~2000 virtual orbitals)
- Canonical RMP2, UMP2, GMP2
- Density-fitting RMP2
- RMP2, UMP2 and GMP2 1-particle and 2-particle density matrices
- RMP2 and UMP2 nuclear gradients
* CCSD (up to ~100 occupied, ~1500 virtual orbitals)
- canonical RCCSD, UCCSD
- canonical RCCSD, UCCSD lambda solver
- RCCSD, UCCSD and GCCSD 1-particle and 2-particle density matrices
- RCCSD and UCCSD nuclear gradients
- EOM-IP/EA/EE-RCCSD and EOM-IP/EA/EE-UCCSD
- RCC2
- Density-fitting RCCSD
* CCSD(T)
- RCCSD(T) and UCCSD(T)
- RCCSD(T), UCCSD(T) and GCCSD(T) 1- and 2-particle density matrices
- RCCSD(T) and UCCSD(T) analytical nuclear gradients
* CI
- RCISD, UCISD and GCISD
- RCISD, UCISD and GCISD 1, 2-particle density matrices
- Selected-CI
- Selected-CI 1, 2-particle density matrices
- RCISD, UCISD and GCISD 1-particle transition density matrices
* Full CI
- Direct-CI solver for spin degenerated Hamiltonian (RHF-FCI)
- Direct-CI solver for spin non-degenerated Hamiltonian (UHF-FCI)
- 1, and 2-particle transition density matrices
- 1, 2, 3, and 4-particle density matrices
- CI wavefunction overlap
* Analytical Nuclear Gradients
- Non-relativistic HF nuclear gradients
- 4-component DHF nuclear gradients
- Non-relativistic DFT nuclear gradients
- Non-relativistic CISD nuclear gradients
- Non-relativistic CCSD and CCSD(T) nuclear gradients
- Non-relativistic CASCI and CASSCF nuclear gradients
- Non-relativistic TDA, TDHF and TDDFT nuclear gradients
- Non-relativistic nuclear gradients with SF-X2C-1e correction
- ECP nuclear gradients
- nuclear gradients for solvent model ddCOSMO
- Frozen orbitals for MP2, CISD, CCSD, CCSD(T), CASCI, CASSCF nuclear gradients
* Nuclear Hessian
- Non-relativistic HF nuclear hessian
- Non-relativistic DFT nuclear hessian
- Non-relativistic nuclear hessian with SF-X2C-1e correction
- ECP nuclear hessian
* Properties
- Non-relativistic RHF, UHF, RKS, UKS NMR shielding
- 4-component DHF NMR shielding
- Non-relativistic RHF, UHF spin-spin coupling
- 4-component DHF spin-spin coupling
- Non-relativistic UHF, UKS hyperfine coupling
- 4-component DHF hyperfine coupling
- Non-relativistic UHF, UKS g-tensor
- 4-component DHF g-tensor
- Non-relativistic UHF zero-field splitting
- Molecular electrostatic potential (MEP)
- EFG and Mossbauer spectroscopy
- Non-relativistic RHF, UHF, RKS, UKS magnetizability
* MRPT
- Strongly contracted NEVPT2 (SC-NEVPT2)
- DMRG-NEVPT2
- IC-MPS-PT2
* Extended systems with periodic boundary condition
- gamma point RHF, ROHF, UHF, RKS, ROKS, UKS
- gamma point TDDFT, MP2, CCSD
- RHF, ROHF, UHF, GHF, RKS, ROKS, UKS with k-point sampling
- Restricted MP2 with k-point sampling
- KRCCSD (RCCSD with k-point sampling)
- KUCCSD
- KGCCSD (Generalized CCSD with k-point sampling)
- k-point GCCSD(T) and RCCSD(T)
- k-point EOM-IP/EA-CCSD
- PBC AO integrals
- PBC MO integral transformation
- PBC density fitting and mixed-density fitting methods
- Smearing for mean-field methods
- Low-dimensional (0D, 1D, 2D) PBC systems
- (restricted and unrestricted) TDA, TDHF and TDDFT with k-point sampling
- Multigrid DFT
- EFG and Mossbauer spectroscopy
* Relativistic effects
- 4-component HF with Dirac-Coulomb Hamiltonian (DHF)
- 4-component DHF with Gaunt and Breit corrections
- 2-component X2C HF
- 4-component and 2-component Kohn-Sham DFT (LDA only)
* AO integrals
- Interface to access all AO integrals of Libcint library
- 1-electron real-GTO and spinor-GTO integrals
- 2-electron real-GTO and spinor-GTO integrals
- 3-center 1-electron real-GTO and spinor-GTO integrals
- 3-center 2-electron real-GTO and spinor-GTO integrals
- General basis value evaluator (for numeric integration)
- PBC 1-electron integrals
- PBC 2-electron integrals
- F12 integrals
* MO integrals
- 2-electron integral transformation for any integrals provided by
Libcint library
- Support for 4-index integral transformation with 4 different orbitals
- PBC 2-electron MO integrals
- Integral transformation for (4-component and 2-compoent relativistic) spinor
integrals
* Localizer
- Boys
- Edmiston
- Meta-Lowdin for both finite size and PBC systems
- Natural atomic orbital (NAO) for both finite size and PBC systems
- Intrinsic atomic orbital (IAO) for both finite size and PBC systems
- Pipek-Mezey for both finite size and PBC systems
- Intrinsic bond orbital (IBO) for both finite size and PBC systems
* Geometry optimization
- HF, DFT, CCSD, CCSD(T), CISD, CASCI, CASSCF and TDSCF/TDDFT with pyberny
geometry optimizer
* D2h symmetry and linear molecule symmetry
- Molecule symmetry detection
- Symmetry adapted basis
- Label orbital symmetry on the fly
- Hot update symmetry information
- Function to symmetrize given orbital space
* Solvent model
- ddCOSMO
- ddPCM
- ddCOSMO analytical nuclear gradients
* Tools
- fcidump writer
- molden writer and reader
- cubegen writer
- Molpro XML reader
- (GAMESS-format) wfn writer
- Vasp CHGCAR-format writer