Skip to content

Latest commit

 

History

History
51 lines (41 loc) · 1.38 KB

README.md

File metadata and controls

51 lines (41 loc) · 1.38 KB

SNP Implementation at Automate 2023

This demo uses a Motoman HC10 mounted on a table with an Intel RealSense camera to reconstruct the surface of an arbitrary part and generate motion plans for polishing parts in a raster pattern

SNP Automate 2023

Run

Run the application from a pre-built Docker image using the following commands:

On hardware

cd docker
docker compose up

In simulation

First create the file docker-compose.override.yml in the docker directory with the following content:

services:
  snp_automate_2023:
    environment:
      SNP_SIM_ROBOT: true
      SNP_SIM_VISION: true

Then bring up the application using docker-compose

cd docker
docker compose up

Local build

  1. Follow the build setup instructions for the main repository
  2. Clone the application-specific ROS2 dependencies into the same workspace
    cd <snp_workspace>
    vcs import src < snp_automate_2023/dependencies.repos
    
  3. Build
    colcon build --cmake-args -DTESSERACT_BUILD_FCL=OFF
    
  4. Run the application
    cd <snp_workspace>
    source install/setup.bash
    ros2 launch snp_automate_2023 start.launch.xml sim_robot:=<true|false> sim_vision:=<true|false>