-
Notifications
You must be signed in to change notification settings - Fork 2
/
DESCRIPTION
90 lines (90 loc) · 3.16 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Type: Package
Package: waywiser
Title: Ergonomic Methods for Assessing Spatial Models
Version: 0.6.0.9000
Authors@R: c(
person("Michael", "Mahoney", , "[email protected]", role = c("aut", "cre"),
comment = c(ORCID = "0000-0003-2402-304X")),
person("Lucas", "Johnson", , "[email protected]", role = "ctb",
comment = c(ORCID = "0000-0002-7953-0260")),
person("Virgilio", "Gómez-Rubio", role = "rev",
comment = "Virgilio reviewed the package (v. 0.2.0.9000) for rOpenSci, see <https://github.com/ropensci/software-review/issues/571>"),
person("Jakub", "Nowosad", role = "rev",
comment = "Jakub reviewed the package (v. 0.2.0.9000) for rOpenSci, see <https://github.com/ropensci/software-review/issues/571>"),
person("Posit Software, PBC", role = c("cph", "fnd"))
)
Description: Assessing predictive models of spatial data can be
challenging, both because these models are typically built for
extrapolating outside the original region represented by training data
and due to potential spatially structured errors, with "hot spots" of
higher than expected error clustered geographically due to spatial
structure in the underlying data. Methods are provided for assessing
models fit to spatial data, including approaches for measuring the
spatial structure of model errors, assessing model predictions at
multiple spatial scales, and evaluating where predictions can be made
safely. Methods are particularly useful for models fit using the
'tidymodels' framework. Methods include Moran's I ('Moran' (1950)
<doi:10.2307/2332142>), Geary's C ('Geary' (1954)
<doi:10.2307/2986645>), Getis-Ord's G ('Ord' and 'Getis' (1995)
<doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement coefficients from
'Ji' and Gallo (2006) (<doi: 10.14358/PERS.72.7.823>), agreement
metrics from 'Willmott' (1981) (<doi: 10.1080/02723646.1981.10642213>)
and 'Willmott' 'et' 'al'. (2012) (<doi: 10.1002/joc.2419>), an
implementation of the area of applicability methodology from 'Meyer'
and 'Pebesma' (2021) (<doi:10.1111/2041-210X.13650>), and an
implementation of multi-scale assessment as described in 'Riemann'
'et' 'al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).
License: MIT + file LICENSE
URL: https://github.com/ropensci/waywiser,
https://docs.ropensci.org/waywiser/
BugReports: https://github.com/ropensci/waywiser/issues
Depends:
R (>= 4.0)
Imports:
dplyr (>= 1.1.0),
fields,
FNN,
glue,
hardhat,
Matrix,
purrr,
rlang (>= 1.1.0),
sf (>= 1.0-0),
spdep (>= 1.1-9),
stats,
tibble,
tidyselect,
vctrs,
yardstick (>= 1.2.0)
Suggests:
applicable,
caret,
CAST,
covr,
exactextractr,
ggplot2,
knitr,
modeldata,
recipes,
rmarkdown,
rsample,
spatialsample,
terra,
testthat (>= 3.0.0),
tidymodels,
tidyr,
tigris,
units,
vip,
whisker,
withr
VignetteBuilder:
knitr
Config/Needs/website: kableExtra
Config/testthat/edition: 3
Config/testthat/parallel: true
Encoding: UTF-8
Language: en-US
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1