forked from facebookresearch/Detic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_mini.py
55 lines (47 loc) · 2.04 KB
/
demo_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import sys
import numpy as np
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
sys.path.insert(0, 'third_party/CenterNet2/')
from centernet.config import add_centernet_config
from detic.config import add_detic_config
from detic.predictor import VisualizationDemo
from detectron2.utils.visualizer import Visualizer
# constants
WINDOW_NAME = "Detic"
def setup_cfg():
cfg = get_cfg()
add_centernet_config(cfg)
add_detic_config(cfg)
cfg.merge_from_file('configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml')
cfg.merge_from_list(['MODEL.WEIGHTS', 'models/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth'])
# Set score_threshold for builtin models
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = 0.5
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = 0.5
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'rand' # load later
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = True
cfg.freeze()
return cfg
class Args():
vocabulary = 'lvis'
if __name__ == "__main__":
cfg = setup_cfg()
detic_demo = VisualizationDemo(cfg, Args())
img = read_image('./desk.jpg', format="BGR")
predictions = detic_demo.predictor(img)
visualizer = Visualizer(img[:, :, ::-1], detic_demo.metadata, instance_mode=detic_demo.instance_mode)
predictions_instances = predictions["instances"].to(detic_demo.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=predictions_instances)
vis_output.save('./out.png')
# 找出目标类别的MASK
classes_name = detic_demo.metadata.get("thing_classes", None)
scores = predictions_instances.scores
classes = predictions_instances.pred_classes.tolist()
masks = np.asarray(predictions_instances.pred_masks)
target_index = classes_name.index('chair')
for class_index, score, mask in zip(classes, scores, masks):
if class_index == target_index:
print(class_index)
print(score)
print(mask.shape)