-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd3-regression1.2.3.js
775 lines (632 loc) · 20.2 KB
/
d3-regression1.2.3.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
// https://github.com/HarryStevens/d3-regression#readme Version 1.2.3. Copyright 2019 Harry Stevens.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = global || self, factory(global.d3 = global.d3 || {}));
}(this, function (exports) { 'use strict';
// Given a dataset, x- and y-accessors, the sum of the y values, and a predict function,
// return the coefficient of determination, or R squared.
function determination(data, x, y, ySum, predict) {
var n = data.length;
var SSE = 0,
SST = 0;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d),
dy = y(d),
yComp = predict(dx);
SSE += Math.pow(dy - yComp, 2);
SST += Math.pow(dy - ySum / n, 2);
}
return 1 - SSE / SST;
}
// Returns the angle of a line in degrees.
function angle(line) {
return Math.atan2(line[1][1] - line[0][1], line[1][0] - line[0][0]) * 180 / Math.PI;
} // Returns the midpoint of a line.
function midpoint(line) {
return [(line[0][0] + line[1][0]) / 2, (line[0][1] + line[1][1]) / 2];
}
// returns a smooth line.
function interpose(minX, maxX, predict) {
var precision = .01,
maxIter = 1e4;
var points = [px(minX), px(maxX)],
iter = 0;
while (find(points) && iter < maxIter) {
}
return points;
function px(x) {
return [x, predict(x)];
}
function find(points) {
iter++;
var n = points.length;
var found = false;
for (var i = 0; i < n - 1; i++) {
var p0 = points[i],
p1 = points[i + 1],
m = midpoint([p0, p1]),
mp = px(m[0]),
a0 = angle([p0, m]),
a1 = angle([p0, mp]),
a = Math.abs(a0 - a1);
if (a > precision) {
points.splice(i + 1, 0, mp);
found = true;
}
}
return found;
}
}
function exponential () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
domain;
function exponential(data) {
var n = data.length;
var ySum = 0,
x2ySum = 0,
ylogySum = 0,
xylogySum = 0,
xySum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d, i, data),
dy = y(d, i, data); // filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
ySum += dy;
x2ySum += dx * dx * dy;
ylogySum += dy * Math.log(dy);
xylogySum += dx * dy * Math.log(dy);
xySum += dx * dy;
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
}
var denominator = ySum * x2ySum - xySum * xySum,
a = Math.exp((x2ySum * ylogySum - xySum * xylogySum) / denominator),
b = (ySum * xylogySum - xySum * ylogySum) / denominator,
fn = function fn(x) {
return a * Math.exp(b * x);
},
out = interpose(minX, maxX, fn);
out.a = a;
out.b = b;
out.predict = fn;
out.rSquared = determination(data, x, y, ySum, fn);
return out;
}
exponential.domain = function (arr) {
return arguments.length ? (domain = arr, exponential) : domain;
};
exponential.x = function (fn) {
return arguments.length ? (x = fn, exponential) : x;
};
exponential.y = function (fn) {
return arguments.length ? (y = fn, exponential) : y;
};
return exponential;
}
function linear () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
domain;
function linear(data) {
var n = data.length,
valid = 0,
xSum = 0,
ySum = 0,
xySum = 0,
x2Sum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity;
for (var i = 0; i < n; i++) {
var _d = data[i],
dx = x(_d, i, data),
dy = y(_d, i, data); // Filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
valid++;
xSum += dx;
ySum += dy;
xySum += dx * dy;
x2Sum += dx * dx;
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
} // Update n in case there were invalid x or y values
n = valid;
var a = n * xySum,
b = xSum * ySum,
c = n * x2Sum,
d = xSum * xSum,
slope = (a - b) / (c - d),
e = ySum,
f = slope * xSum,
intercept = (e - f) / n,
fn = function fn(x) {
return slope * x + intercept;
};
var rSquared = determination(data, x, y, ySum, fn);
var out = [[minX, minX * slope + intercept], [maxX, maxX * slope + intercept]];
out.a = slope;
out.b = intercept;
out.predict = fn;
out.rSquared = rSquared;
return out;
}
linear.domain = function (arr) {
return arguments.length ? (domain = arr, linear) : domain;
};
linear.x = function (fn) {
return arguments.length ? (x = fn, linear) : x;
};
linear.y = function (fn) {
return arguments.length ? (y = fn, linear) : y;
};
return linear;
}
// Returns the medium value of an array of numbers.
function median(arr) {
arr.sort(function (a, b) {
return a - b;
});
var i = arr.length / 2;
return i % 1 === 0 ? (arr[i - 1] + arr[i]) / 2 : arr[Math.floor(i)];
}
// Sort an array using an accessor.
function sort(arr, fn) {
return arr.sort(function (a, b) {
return fn(a) - fn(b);
});
}
// Source: https://github.com/jasondavies/science.js/blob/master/src/stats/loess.js
// License: https://github.com/jasondavies/science.js/blob/master/LICENSE
function loess () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
bandwidth = .3,
robustnessIters = 2,
accuracy = 1e-12;
function loess(data) {
var n = data.length,
bw = Math.max(2, ~~(bandwidth * n)),
// # Nearest neighbors
xval = [],
yval = [],
yhat = [],
residuals = [],
robustWeights = []; // Slice before sort to avoid modifying input
sort(data = data.slice(), x);
for (var i = 0, j = 0; i < n; ++i) {
var d = data[i],
xi = x(d, i, data),
yi = y(d, i, data); // Filter out points with invalid x or y values
if (xi != null && isFinite(xi) && yi != null && isFinite(yi)) {
xval[j] = xi;
yval[j] = yi;
yhat[j] = 0;
residuals[j] = 0;
robustWeights[j] = 1;
++j;
}
}
var m = xval.length; // # LOESS input points
for (var iter = -1; ++iter <= robustnessIters;) {
var interval = [0, bw - 1];
for (var _i = 0; _i < m; ++_i) {
var dx = xval[_i],
i0 = interval[0],
i1 = interval[1],
edge = dx - xval[i0] > xval[i1] - dx ? i0 : i1;
var sumWeights = 0,
sumX = 0,
sumXSquared = 0,
sumY = 0,
sumXY = 0,
denom = 1 / Math.abs(xval[edge] - dx || 1); // Avoid singularity!
for (var k = i0; k <= i1; ++k) {
var xk = xval[k],
yk = yval[k],
w = tricube(Math.abs(dx - xk) * denom) * robustWeights[k],
xkw = xk * w;
sumWeights += w;
sumX += xkw;
sumXSquared += xk * xkw;
sumY += yk * w;
sumXY += yk * xkw;
} // Linear regression fit
var meanX = sumX / sumWeights,
meanY = sumY / sumWeights,
meanXY = sumXY / sumWeights,
meanXSquared = sumXSquared / sumWeights,
beta = Math.sqrt(Math.abs(meanXSquared - meanX * meanX)) < accuracy ? 0 : (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX),
alpha = meanY - beta * meanX;
yhat[_i] = beta * dx + alpha;
residuals[_i] = Math.abs(yval[_i] - yhat[_i]);
updateInterval(xval, _i + 1, interval);
}
if (iter === robustnessIters) {
break;
}
var medianResidual = median(residuals);
if (Math.abs(medianResidual) < accuracy) break;
for (var _i2 = 0, arg, _w; _i2 < m; ++_i2) {
arg = residuals[_i2] / (6 * medianResidual); // Default to accuracy epsilon (rather than zero) for large deviations
// keeping weights tiny but non-zero prevents singularites
robustWeights[_i2] = arg >= 1 ? accuracy : (_w = 1 - arg * arg) * _w;
}
}
return output(xval, yhat);
}
loess.bandwidth = function (bw) {
return arguments.length ? (bandwidth = bw, loess) : bandwidth;
};
loess.x = function (fn) {
return arguments.length ? (x = fn, loess) : x;
};
loess.y = function (fn) {
return arguments.length ? (y = fn, loess) : y;
};
return loess;
} // Weighting kernel for local regression
function tricube(x) {
return (x = 1 - x * x * x) * x * x;
} // Advance sliding window interval of nearest neighbors
function updateInterval(xval, i, interval) {
var val = xval[i],
left = interval[0],
right = interval[1] + 1;
if (right >= xval.length) return; // Step right if distance to new right edge is <= distance to old left edge.
// Step when distance is equal to ensure movement over duplicate x values.
while (i > left && xval[right] - val <= val - xval[left]) {
interval[0] = ++left;
interval[1] = right;
++right;
}
} // Generate smoothed output points.
// Average points with repeated x values.
function output(xval, yhat) {
var n = xval.length,
out = [];
for (var i = 0, cnt = 0, prev = [], v; i < n; ++i) {
v = xval[i];
if (prev[0] === v) {
// Average output values via online update
prev[1] += (yhat[i] - prev[1]) / ++cnt;
} else {
// Add new output point
cnt = 0;
prev = [v, yhat[i]];
out.push(prev);
}
}
return out;
}
function logarithmic () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
domain;
function logarithmic(data) {
var n = data.length,
valid = 0,
xlogSum = 0,
yxlogSum = 0,
ySum = 0,
xlog2Sum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d, i, data),
dy = y(d, i, data); // Filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
valid++;
xlogSum += Math.log(dx);
yxlogSum += dy * Math.log(dx);
ySum += dy;
xlog2Sum += Math.pow(Math.log(dx), 2);
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
} // Update n in case there were invalid x or y values
n = valid;
var a = (n * yxlogSum - ySum * xlogSum) / (n * xlog2Sum - xlogSum * xlogSum),
b = (ySum - a * xlogSum) / n,
fn = function fn(x) {
return a * Math.log(x) + b;
},
out = interpose(minX, maxX, fn);
out.a = a;
out.b = b;
out.predict = fn;
out.rSquared = determination(data, x, y, ySum, fn);
return out;
}
logarithmic.domain = function (arr) {
return arguments.length ? (domain = arr, logarithmic) : domain;
};
logarithmic.x = function (fn) {
return arguments.length ? (x = fn, logarithmic) : x;
};
logarithmic.y = function (fn) {
return arguments.length ? (y = fn, logarithmic) : y;
};
return logarithmic;
}
// Source: https://github.com/Tom-Alexander/regression-js/blob/master/src/regression.js#L246
// License: https://github.com/Tom-Alexander/regression-js/blob/master/LICENSE
function polynomial () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
order = 3,
domain;
function polynomial(data) {
// First pass through the data
var arr = [],
ySum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity,
n = data.length;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d, i, data),
dy = y(d, i, data); // Filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
arr[i] = [dx, dy];
ySum += dy;
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
} // Update n in case there were invalid x or y values
n = arr.length; // Calculate the coefficients
var lhs = [],
rhs = [],
k = order + 1;
var a = 0,
b = 0;
for (var _i = 0; _i < k; _i++) {
for (var l = 0; l < n; l++) {
a += Math.pow(arr[l][0], _i) * arr[l][1];
}
lhs.push(a);
a = 0;
var c = [];
for (var j = 0; j < k; j++) {
for (var _l = 0; _l < n; _l++) {
b += Math.pow(arr[_l][0], _i + j);
}
c[j] = b;
b = 0;
}
rhs.push(c);
}
rhs.push(lhs);
var coefficients = gaussianElimination(rhs, k),
fn = function fn(x) {
return coefficients.reduce(function (sum, coeff, power) {
return sum + coeff * Math.pow(x, power);
}, 0);
},
out = interpose(minX, maxX, fn);
out.coefficients = coefficients;
out.predict;
out.rSquared = determination(data, x, y, ySum, fn);
return out;
}
polynomial.domain = function (arr) {
return arguments.length ? (domain = arr, polynomial) : domain;
};
polynomial.x = function (fn) {
return arguments.length ? (x = fn, polynomial) : x;
};
polynomial.y = function (fn) {
return arguments.length ? (y = fn, polynomial) : y;
};
polynomial.order = function (n) {
return arguments.length ? (order = n, polynomial) : order;
};
return polynomial;
} // Given an array representing a two-dimensional matrix,
// and an order parameter representing how many degrees to solve for,
// determine the solution of a system of linear equations A * x = b using
// Gaussian elimination.
function gaussianElimination(matrix, order) {
var n = matrix.length - 1,
coefficients = [order];
for (var i = 0; i < n; i++) {
var maxrow = i;
for (var j = i + 1; j < n; j++) {
if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxrow])) {
maxrow = j;
}
}
for (var k = i; k < n + 1; k++) {
var tmp = matrix[k][i];
matrix[k][i] = matrix[k][maxrow];
matrix[k][maxrow] = tmp;
}
for (var _j = i + 1; _j < n; _j++) {
for (var _k = n; _k >= i; _k--) {
matrix[_k][_j] -= matrix[_k][i] * matrix[i][_j] / matrix[i][i];
}
}
}
for (var _j2 = n - 1; _j2 >= 0; _j2--) {
var total = 0;
for (var _k2 = _j2 + 1; _k2 < n; _k2++) {
total += matrix[_k2][_j2] * coefficients[_k2];
}
coefficients[_j2] = (matrix[n][_j2] - total) / matrix[_j2][_j2];
}
return coefficients;
}
function power () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
domain;
function power(data) {
var n = data.length,
valid = 0,
xlogSum = 0,
xlogylogSum = 0,
ylogSum = 0,
xlog2Sum = 0,
ySum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d, i, data),
dy = y(d, i, data); // Filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
valid++;
xlogSum += Math.log(dx);
xlogylogSum += Math.log(dy) * Math.log(dx);
ylogSum += Math.log(dy);
xlog2Sum += Math.pow(Math.log(dx), 2);
ySum += dy;
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
} // Update n in case there were invalid x or y values
n = valid;
var b = (n * xlogylogSum - xlogSum * ylogSum) / (n * xlog2Sum - Math.pow(xlogSum, 2)),
a = Math.exp((ylogSum - b * xlogSum) / n),
fn = function fn(x) {
return a * Math.pow(x, b);
},
out = interpose(minX, maxX, fn);
out.a = a;
out.b = b;
out.predict = fn;
out.rSquared = determination(data, x, y, ySum, fn);
return out;
}
power.domain = function (arr) {
return arguments.length ? (domain = arr, power) : domain;
};
power.x = function (fn) {
return arguments.length ? (x = fn, power) : x;
};
power.y = function (fn) {
return arguments.length ? (y = fn, power) : y;
};
return power;
}
function quadratic () {
var x = function x(d) {
return d[0];
},
y = function y(d) {
return d[1];
},
domain;
function quadratic(data) {
var n = data.length,
valid = 0,
xSum = 0,
ySum = 0,
x2Sum = 0,
x3Sum = 0,
x4Sum = 0,
xySum = 0,
x2ySum = 0,
minX = domain ? +domain[0] : Infinity,
maxX = domain ? +domain[1] : -Infinity;
for (var i = 0; i < n; i++) {
var d = data[i],
dx = x(d, i, data),
dy = y(d, i, data),
x2Val = Math.pow(dx, 2); // Filter out points with invalid x or y values
if (dx != null && isFinite(dx) && dy != null && isFinite(dy)) {
valid++;
xSum += dx;
ySum += dy;
x2Sum += x2Val;
x3Sum += Math.pow(dx, 3);
x4Sum += Math.pow(dx, 4);
xySum += dx * dy;
x2ySum += x2Val * dy;
if (!domain) {
if (dx < minX) minX = dx;
if (dx > maxX) maxX = dx;
}
}
} // Update n in case there were invalid x or y values
n = valid;
var sumXX = x2Sum - Math.pow(xSum, 2) / n,
sumXY = xySum - xSum * ySum / n,
sumXX2 = x3Sum - x2Sum * xSum / n,
sumX2Y = x2ySum - x2Sum * ySum / n,
sumX2X2 = x4Sum - Math.pow(x2Sum, 2) / n,
a = (sumX2Y * sumXX - sumXY * sumXX2) / (sumXX * sumX2X2 - Math.pow(sumXX2, 2)),
b = (sumXY * sumX2X2 - sumX2Y * sumXX2) / (sumXX * sumX2X2 - Math.pow(sumXX2, 2)),
c = ySum / n - b * (xSum / n) - a * (x2Sum / n),
fn = function fn(x) {
return a * Math.pow(x, 2) + b * x + c;
},
out = interpose(minX, maxX, fn);
out.a = a;
out.b = b;
out.c = c;
out.predict = fn;
out.rSquared = determination(data, x, y, ySum, fn);
return out;
}
quadratic.domain = function (arr) {
return arguments.length ? (domain = arr, quadratic) : domain;
};
quadratic.x = function (fn) {
return arguments.length ? (x = fn, quadratic) : x;
};
quadratic.y = function (fn) {
return arguments.length ? (y = fn, quadratic) : y;
};
return quadratic;
}
exports.regressionExp = exponential;
exports.regressionLinear = linear;
exports.regressionLoess = loess;
exports.regressionLog = logarithmic;
exports.regressionPoly = polynomial;
exports.regressionPow = power;
exports.regressionQuad = quadratic;
Object.defineProperty(exports, '__esModule', { value: true });
}));