-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathusage_cached.py
42 lines (34 loc) · 1.27 KB
/
usage_cached.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
'''
ELMo usage example to write biLM embeddings for an entire dataset to
a file.
'''
import os
import h5py
from bilm import dump_bilm_embeddings
# Our small dataset.
raw_context = [
'Pretrained biLMs compute representations useful for NLP tasks .',
'They give state of the art performance for many tasks .'
]
tokenized_context = [sentence.split() for sentence in raw_context]
tokenized_question = [
['What', 'are', 'biLMs', 'useful', 'for', '?'],
]
# Create the dataset file.
dataset_file = 'dataset_file.txt'
with open(dataset_file, 'w') as fout:
for sentence in tokenized_context + tokenized_question:
fout.write(' '.join(sentence) + '\n')
# Location of pretrained LM. Here we use the test fixtures.
datadir = os.path.join('tests', 'fixtures', 'model')
vocab_file = os.path.join(datadir, 'vocab_test.txt')
options_file = os.path.join(datadir, 'options.json')
weight_file = os.path.join(datadir, 'lm_weights.hdf5')
# Dump the embeddings to a file. Run this once for your dataset.
embedding_file = 'elmo_embeddings.hdf5'
dump_bilm_embeddings(
vocab_file, dataset_file, options_file, weight_file, embedding_file
)
# Load the embeddings from the file -- here the 2nd sentence.
with h5py.File(embedding_file, 'r') as fin:
second_sentence_embeddings = fin['1'][...]