-
-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathdenoiser.py
36 lines (29 loc) · 1.37 KB
/
denoiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import sys
import torch
from utils.stft import STFT
class Denoiser(torch.nn.Module):
""" Removes model bias from audio produced with waveglow """
def __init__(self, melgan, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros'):
super(Denoiser, self).__init__()
self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap),
win_length=win_length).cuda()
if mode == 'zeros':
mel_input = torch.zeros(
(1, 80, 88)).cuda()
elif mode == 'normal':
mel_input = torch.randn(
(1, 80, 88)).cuda()
else:
raise Exception("Mode {} if not supported".format(mode))
with torch.no_grad():
bias_audio = melgan.inference(mel_input).float() # [B, 1, T]
bias_spec, _ = self.stft.transform(bias_audio.squeeze(0))
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
def forward(self, audio, strength=0.1):
audio_spec, audio_angles = self.stft.transform(audio.cuda().float())
audio_spec_denoised = audio_spec.cuda() - self.bias_spec * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles.cuda())
return audio_denoised