-
Notifications
You must be signed in to change notification settings - Fork 502
/
Copy pathtest_network.py
43 lines (35 loc) · 1.43 KB
/
test_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import lpips
from IPython import embed
use_gpu = False # Whether to use GPU
spatial = True # Return a spatial map of perceptual distance.
# Linearly calibrated models (LPIPS)
loss_fn = lpips.LPIPS(net='alex', spatial=spatial) # Can also set net = 'squeeze' or 'vgg'
# loss_fn = lpips.LPIPS(net='alex', spatial=spatial, lpips=False) # Can also set net = 'squeeze' or 'vgg'
if(use_gpu):
loss_fn.cuda()
## Example usage with dummy tensors
dummy_im0 = torch.zeros(1,3,64,64) # image should be RGB, normalized to [-1,1]
dummy_im1 = torch.zeros(1,3,64,64)
if(use_gpu):
dummy_im0 = dummy_im0.cuda()
dummy_im1 = dummy_im1.cuda()
dist = loss_fn.forward(dummy_im0,dummy_im1)
## Example usage with images
ex_ref = lpips.im2tensor(lpips.load_image('./imgs/ex_ref.png'))
ex_p0 = lpips.im2tensor(lpips.load_image('./imgs/ex_p0.png'))
ex_p1 = lpips.im2tensor(lpips.load_image('./imgs/ex_p1.png'))
if(use_gpu):
ex_ref = ex_ref.cuda()
ex_p0 = ex_p0.cuda()
ex_p1 = ex_p1.cuda()
ex_d0 = loss_fn.forward(ex_ref,ex_p0)
ex_d1 = loss_fn.forward(ex_ref,ex_p1)
if not spatial:
print('Distances: (%.3f, %.3f)'%(ex_d0, ex_d1))
else:
print('Distances: (%.3f, %.3f)'%(ex_d0.mean(), ex_d1.mean())) # The mean distance is approximately the same as the non-spatial distance
# Visualize a spatially-varying distance map between ex_p0 and ex_ref
import pylab
pylab.imshow(ex_d0[0,0,...].data.cpu().numpy())
pylab.show()