-
Notifications
You must be signed in to change notification settings - Fork 4
/
classifiers.py
688 lines (475 loc) · 23.4 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
from sklearn.metrics import recall_score, precision_score, roc_auc_score
from header import *
import header
import importlib
importlib.reload(header) # For reloading after making changes
DEBUG = 1
# ==================================================================
def plot_kde(real_samples, gen_samples, normal_traffic, with_class=False):
plt.style.use('seaborn-white')
data_cols = real_samples.columns
len_of_columns = len(data_cols)
if with_class:
len_of_columns = len_of_columns - 1
cols = 6
rows = len_of_columns // cols + 1
print(rows)
i = 0
# print(real_samples['response_body_len'].describe())
fig, axs = plt.subplots(ncols=cols, nrows=rows, figsize=(28, 38))
for row in range(rows):
for col in range(cols):
sns.kdeplot(data=real_samples, x=data_cols[i], color='#e70a16', ax=axs[row]
[col], label='Real Bots', bw_adjust=2, fill=True, linewidth=1.4)
axs[0][0].legend()
# axs[0][0].axes.yaxis.set_visible(False)
sns.kdeplot(data=gen_samples, x=data_cols[i], color='#0074f3', ax=axs[row]
[col], label='GAN Bots', bw_adjust=2, fill=True, linewidth=1.4)
axs[0][0].legend()
sns.kdeplot(data=normal_traffic, x=data_cols[i], color='#017102', ax=axs[row]
[col], label='Normal Traffic', bw_adjust=2, fill=True, linewidth=1.4)
axs[0][0].legend()
# axs[0][0].axes.yaxis.set_visible(False)
i = i + 1
if i >= len_of_columns:
break
if i >= len_of_columns:
break
i = 0
# plt.legend(['Real Bots', 'GAN, Bots'])
# #axs[0][0].legend()
# if save_fig:
# plt.savefig(figs_path + TODAY + '/' + cache_prefix + '_KDE' + str(list_log_iteration[-1]) + '.pdf', dpi=600)
# fig.suptitle('RMS = ' +str(rms) + '\nRMS(min) = ' + str(min(rms_list)), fontsize=16)
plt.show()
plt.close(fig)
# ==================================================================
def recall(preds, dtrain):
labels = dtrain.get_label()
return 'recall', recall_score(labels, np.round(preds))
# ==================================================================
def precision(preds, dtrain):
return 'precision', precision_score(labels, np.round(preds))
# ==================================================================
def roc_auc(preds, dtrain):
return 'roc_auc', roc_auc_score(labels, preds)
# ==================================================================
def perf_measure(y_pred, y_test):
TP = np.sum((y_pred == 1) & (y_test == 1))
TN = np.sum((y_pred == 0) & (y_test == 0))
FP = np.sum((y_pred == 1) & (y_test == 0))
FN = np.sum((y_pred == 0) & (y_test == 1))
# evasions = np.where((y_pred == 0) & (y_test == 1), 1, 0)
# print([i for i, x in enumerate(evasions) if x])
return TP, TN, FP, FN
# ==================================================================
def SimpleMetrics(y_pred, y_test):
TP, TN, FP, FN = perf_measure(y_pred, y_test)
ACC = (TP + TN) / (TP + TN + FP + FN)
# Reporting
print('Confusion Matrix')
display(pd.DataFrame([[TN, FP], [FN, TP]], columns=[
'Pred 0', 'Pred 1'], index=['True 0', 'True 1']))
return ACC
# ==================================================================
def SimpleAccuracy(y_pred, y_test):
ACC = SimpleMetrics(y_pred, y_test)
print('Accuracy: ' + str(ACC))
return ACC
# ==================================================================
def SimpleRecall(y_pred, y_test):
TP, TN, FP, FN = perf_measure(y_pred, y_test)
RCL = TP / (TP + FN)
print('Recall: ' + str(RCL))
# print( 'Recall: {}'.format( round(RCL,4) ))
return RCL
# ==================================================================
def get_data_batch(train, batch_size, seed):
# # random sampling - some samples will have excessively low or high sampling, but easy to implement
# np.random.seed(seed)
# x = train.loc[ np.random.choice(train.index, batch_size) ].values
# print("seed is ======>>>> " + str(seed))
# iterate through shuffled indices, so every sample gets covered evenly
start_i = (batch_size * seed) % len(train)
# print("start_i is ======>>>> " + str(start_i))
stop_i = start_i + batch_size
# print("stop_i is ======>>>> " + str(stop_i))
shuffle_seed = (batch_size * seed) // len(train)
# print("shuffle_seed is ======>>>> " + str(shuffle_seed))
np.random.seed(shuffle_seed)
# wasteful to shuffle every time
train_ix = np.random.choice(
list(train.index), replace=False, size=len(train))
# duplicate to cover ranges past the end of the set
train_ix = list(train_ix) + list(train_ix)
x = train.loc[train_ix[start_i: stop_i]].values
x = pd.DataFrame(x)
x.columns = train.columns
return_matrix = np.reshape(x, (batch_size, -1))
# print(return_matrix)
return return_matrix
# ==================================================================
def c2st(X, y, clf=LogisticRegression(), loss=hamming_loss, bootstraps=10):
"""
Perform Classifier Two Sample Test (C2ST) [1].
This test estimates if a target is predictable from features by comparing the loss of a classifier learning
the true target with the distribution of losses of classifiers learning a random target with the same average.
The null hypothesis is that the target is independent of the features - therefore the loss of a classifier learning
to predict the target should not be different from the one of a classifier learning independent, random noise.
Input:
- `X` : (n,m) matrix of features
- `y` : (n,) vector of target - for now only supports binary target
- `clf` : instance of sklearn compatible classifier (default: `LogisticRegression`)
- `loss` : sklearn compatible loss function (default: `hamming_loss`)
- `bootstraps` : number of resamples for generating the loss scores under the null hypothesis
Return: (
loss value of classifier predicting `y`,
loss values of bootstraped random targets,
p-value of the test
)
Usage:
>>> emp_loss, random_losses, pvalue = c2st(X, y)
Plotting H0 and target loss:
>>>bins, _, __ = plt.hist(random_losses)
>>>med = np.median(random_losses)
>>>plt.plot((med,med),(0, max(bins)), 'b')
>>>plt.plot((emp_loss,emp_loss),(0, max(bins)), 'r--')
[1] Lopez-Paz, D., & Oquab, M. (2016). Revisiting classifier two-sample tests. arXiv preprint arXiv:1610.06545.
"""
X_train, X_test, y_train, y_test = train_test_split(X, y)
y_pred = clf.fit(X_train, y_train).predict(X_test)
emp_loss = loss(y_test, y_pred)
bs_losses = []
y_bar = np.mean(y)
for b in range(bootstraps+1):
y_random = np.random.binomial(1, y_bar, size=y.shape[0])
X_train, X_test, y_train, y_test = train_test_split(X, y_random)
y_pred_bs = clf.fit(X_train, y_train).predict(X_test)
bs_losses += [loss(y_test, y_pred_bs)]
pc = stats.percentileofscore(sorted(bs_losses), emp_loss) / 100.
pvalue = pc if pc < y_bar else 1 - pc
return emp_loss, np.array(bs_losses), pvalue
# ==================================================================
def Evaluate_Parameter_old(x, g_z, data_cols, label_cols=[], seed=0, with_class=False, data_dim=2, classifier='xgb', EVALUATION_PARAMETER=''):
REAL_CONCAT_GEN_SET = np.vstack([x, g_z])
REAL_CONCAT_GEN_SET_LABELS = np.hstack(
[np.zeros(int(len(x))), np.ones(int(len(g_z)))])
# Use half of each real and generated set for training
dtrain = np.vstack([x[:int(len(x) / 2)], g_z[:int(len(g_z) / 2)]])
# synthetic labels
dlabels = np.hstack(
[np.zeros(int(len(x) / 2)), np.ones(int(len(g_z) / 2))])
# Use the other half of each set for testing
dtest = np.vstack([x[int(len(x) / 2):], g_z[int(len(g_z) / 2):]])
y_test = dlabels # Labels for test samples will be the same as the labels for training samples, assuming even batch sizes
# print(dtrain.shape)
# print(dtest.shape)
if(classifier == 'XGB'):
print('Evaluation ---->> XBG')
clf = XGBClassifier(eval_metric='logloss', use_label_encoder=False)
# print(c2st(REAL_CONCAT_GEN_SET, REAL_CONCAT_GEN_SET_LABELS, clf=clf))
clf.fit(dtrain, y_test)
y_pred = clf.predict(dtest)
if ALL_CLASSIFIERS:
if (classifier == 'DT'):
print('Evaluation ---->> DT')
clf = DecisionTreeClassifier()
clf = clf.fit(dtrain, y_test)
y_pred = clf.predict(dtest)
elif (classifier == 'RF'):
print('Evaluation ---->> RF')
clf = RandomForestClassifier(n_estimators=100)
clf.fit(dtrain, y_test)
y_pred = clf.predict(dtest)
elif (classifier == 'LR'):
print('Evaluation ---->> LR')
logreg = LogisticRegression(max_iter=10000000)
logreg.fit(dtrain, y_test)
y_pred = logreg.predict(dtest)
elif (classifier == 'KNN'):
print('Evaluation ---->> KNN')
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(dtrain, y_test)
y_pred = knn_classifier.predict(dtest)
elif (classifier == 'NB'):
print('Evaluation ---->> NB')
gnb = GaussianNB()
# Train the model using the training sets
gnb.fit(dtrain, y_test)
y_pred = gnb.predict(dtest)
# elif (classifier=='SVM'):
# if DEBUG:
# print('Evaluation ---->> SVM >>>>>>>>>>>>>>>>>>>>>>>>>>>>')
# svclassifier = SVC(kernel='linear')
# svclassifier.fit(dtrain, y_test)
# y_pred = svclassifier.predict(dtest)
y_pred = np.round(y_pred)
# print(y_pred)
# return '{:.2f}'.format(SimpleAccuracy(y_pred, y_test)) # assumes
# balanced real and generated datasets
# assumes balanced real and generated datasets
if EVALUATION_PARAMETER == 'Recall':
# SimpleMetrics(y_pred, y_test)
# return SimpleAccuracy(y_pred, y_test)
return SimpleRecall(y_pred, y_test)
return [SimpleAccuracy(y_pred, y_test), SimpleRecall(y_pred, y_test)]
# ==================================================================
def Evaluate_Parameter(x, g_z, data_cols, label_cols=[], seed=0, with_class=False, data_dim=2, classifier='xgb', EVALUATION_PARAMETER=''):
rcl = 0
acc = 0
g_z = pd.DataFrame(g_z)
g_z.columns = x.columns
REAL_CONCAT_GEN_SET = np.vstack([x, g_z])
REAL_CONCAT_GEN_SET = pd.DataFrame(REAL_CONCAT_GEN_SET)
REAL_CONCAT_GEN_SET.columns = x.columns
REAL_CONCAT_GEN_SET_LABELS = np.hstack(
[np.zeros(int(len(x))), np.ones(int(len(g_z)))])
REAL_CONCAT_GEN_SET['Label'] = REAL_CONCAT_GEN_SET_LABELS
# REAL_CONCAT_GEN_SET = REAL_CONCAT_GEN_SET.sample(frac=1).reset_index(drop=True)
REAL_CONCAT_GEN_SET_LABELS = REAL_CONCAT_GEN_SET['Label'].values
# print(pd.DataFrame(REAL_CONCAT_GEN_SET_LABELS))
# REAL_CONCAT_GEN_SET.to_csv(str(DATA_SET_PATH) + 'GAN' + 'GAN_REAL_CONCAT.csv')
# print('File: ' + 'GAN' + '_AUG_DATA_SET.csv saved to directory')
# =====================================================================
# print(REAL_CONCAT_GEN_SET.describe())
if (classifier == 'XGB'):
# clf = XGBClassifier(eval_metric='logloss', use_label_encoder=False)
clf = XGBClassifier(eval_metric='logloss', use_label_encoder=False)
if ALL_CLASSIFIERS:
if (classifier == 'DT'):
clf = DecisionTreeClassifier()
elif (classifier == 'NB'):
clf = GaussianNB()
elif (classifier == 'RF'):
# clf = RandomForestClassifier(n_estimators=100)
clf = RandomForestClassifier()
elif (classifier == 'LR'):
# clf = LogisticRegression(max_iter=10000)
clf = LogisticRegression(max_iter=10000000)
elif (classifier == 'KNN'):
# clf = KNeighborsClassifier(n_neighbors=5)
clf = KNeighborsClassifier()
for i in range(10): # 10-folds
X_train, X_test, y_train, y_test = train_test_split(
REAL_CONCAT_GEN_SET, REAL_CONCAT_GEN_SET_LABELS, test_size=0.3, random_state=i)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
acc_ = accuracy_score(y_test, y_pred)
rcl_ = recall_score(y_test, y_pred)
# print(i+1, '[Acc:', acc_,',Rcl:' ,rcl_, ']')
acc += acc_
rcl += rcl_
acc = acc/(i+1)
rcl = rcl/(i+1)
print(classifier, ': [Acc:', acc, ', Rcl:', rcl, ']')
return [acc, rcl]
# ==================================================================
def ConfusionMatrix(y_pred, y_test):
TP, TN, FP, FN = perf_measure(y_pred, y_test)
from IPython.display import display
print('Confusion Matrix')
display(pd.DataFrame([[TN, FP], [FN, TP]], columns=[
'Pred Normal', 'Pred Bot'], index=['Normal', 'Bot']))
# ==================================================================
def clsfr_train_test(X_train, y_train, X_test, y_test, accu_list=[], rcl_list=[], prec_list=[], f1_list=[], clf=0):
clf.fit(X_train, y_train)
y_pred = np.round(clf.predict(X_test))
accu = accuracy_score(y_test, y_pred)
rcl = recall_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
# TP, TN, FP, FN = perf_measure(y_pred, y_test)
# accu = ( TP + TN ) / ( TP + TN + FP + FN )
# rcl = TP / ( TP + FN )
# print(TP, TP + FP)
# prec = TP / ( TP + FP )
# f1 = 2 * ( prec * rcl) / ( prec + rcl)
accu = round(accu * 100, 2)
rcl = round(rcl * 100, 2)
prec = round(prec * 100, 2)
f1 = round(f1 * 100, 2)
accu_list.append(accu)
rcl_list.append(rcl)
prec_list.append(prec)
f1_list.append(f1)
ConfusionMatrix(y_pred, y_test)
print('Accuracy: ' + str(accu_list) + str('%'))
print('Recall: ' + str(rcl_list) + str('%'))
print('Precision: ' + str(prec_list) + str('%'))
print('F1: ' + str(f1_list) + str('%') + '\n\n')
# ===============================================================================================================================
# ===============================================================================================================================
# ===============================================================================================================================
def run_all_classifiers(X_train, y_train, X_test, y_test, accu_list=[], rcl_list=[], prec_list=[], f1_list=[]):
print('Running XGB ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list, rcl_list, prec_list,
f1_list, clf=XGBClassifier(eval_metric='logloss', use_label_encoder=False))
print('Running DT ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list,
rcl_list, prec_list, f1_list, clf=DecisionTreeClassifier())
print('Running NB ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list,
rcl_list, prec_list, f1_list, clf=GaussianNB())
print('Running RF ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list, rcl_list,
prec_list, f1_list, clf=RandomForestClassifier(n_estimators=100))
print('Running LR ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list, rcl_list,
prec_list, f1_list, clf=LogisticRegression(max_iter=10000000))
print('Running KNN ...')
clsfr_train_test(X_train, y_train, X_test, y_test, accu_list, rcl_list,
prec_list, f1_list, clf=KNeighborsClassifier(n_neighbors=5))
# ===============================================================================================================================
# ===============================================================================================================================
# ===============================================================================================================================
def generate_gan_data(x, labels=[], weight_or_epoch_number=0, data_dim=0, FULL_CACHE_PATH='', GAN_type='', TODAY='', DATA_SIZE=0):
with_class = False
NOISE_SIZE = 100
print(GAN_type)
if GAN_type == 'GAN':
base_n_count = 256
gen_model, disc_model, comb_model = define_models_GAN(
100, data_dim, base_n_count)
elif GAN_type == 'keras_GAN':
gen_model = GAN(IMG_SHAPE=data_dim).generator
elif GAN_type == 'CGAN':
with_class = True
base_n_count = 64
gen_model, disc_model, comb_model = define_models_CGAN(
100, data_dim, 1, base_n_count)
elif GAN_type == 'WGAN':
gen_model = WGAN(IMG_SHAPE=data_dim).generator
# base_n_count = 128
# gen_model, disc_model, comb_model = define_models_WGAN(100, data_dim, base_n_count)
elif GAN_type == 'WCGAN':
with_class = True
base_n_count = 128
gen_model, disc_model, comb_model = define_models_CGAN(
NOISE_SIZE, data_dim, 1, base_n_count, type='Wasserstein')
print('Generating ' + GAN_type + '-bots')
gen_model.load_weights(FULL_CACHE_PATH + TODAY + '/' + GAN_type +
'_generator_model_weights_step_' + str(weight_or_epoch_number)+'.h5')
np.random.seed(20)
z = np.random.normal(size=(DATA_SIZE, 100))
if USE_UNIFORM_NOISE:
z = np.random.uniform(size=(DATA_SIZE, NOISE_SIZE))
if with_class:
g_z = gen_model.predict([z, labels])
else:
g_z = gen_model.predict(z)
# g_z -= g_z.min()
# g_z /= g_z.max()
df = pd.DataFrame(g_z).copy()
if GAN_type == 'GAN' or GAN_type == 'WGAN':
df.columns = x.columns[:-1]
elif GAN_type == 'CGAN' or GAN_type == 'WCGAN':
df.columns = x.columns
df['Label'] = 1 # Label = 1 (For Black box Attack)
return df
# ===============================================================================================================================
# ===============================================================================================================================
# ===============================================================================================================================
def augment_bots(X_train, y_train, bots, cols, GAN_type='', DATA_SET_PATH='', classifier=''):
df = pd.DataFrame(X_train)
df.columns = cols[:-1]
df['Label'] = y_train
if DEBUG:
BOT_COUNTS = df['Label'].value_counts()[1]
BENIGN_COUNTS = df['Label'].value_counts()[0]
print('Bots in dataset:')
print(BOT_COUNTS)
print('Normal in dataset:')
print(BENIGN_COUNTS)
print('Dataset before aug:')
print(df.shape)
# for i in range(10):
df = pd.concat([df, bots]).reset_index(
drop=True) # Augmenting with real botnets
# df.loc[df[df.columns] >0.5 ] = 1 # For Husnain Data
gen_data_set = df
# ===============================================================================================================================
gen_data_set.to_csv(str(DATA_SET_PATH) + classifier +
'_' + GAN_type + '_AUG_DATA_SET.csv')
print('File: ' + GAN_type + '_AUG_DATA_SET.csv saved to directory')
# ===============================================================================================================================
X_train = gen_data_set[cols[:-1]].values
y_train = gen_data_set['Label'].values
if DEBUG:
BOT_COUNTS = gen_data_set['Label'].value_counts()[1]
BENIGN_COUNTS = gen_data_set['Label'].value_counts()[0]
print('Bots in dataset:')
print(BOT_COUNTS)
print('Normal in dataset:')
print(BENIGN_COUNTS)
print('Dataset after aug:')
print(gen_data_set.shape)
return X_train, y_train
# ===============================================================================================================================
# ===============================================================================================================================
# ===============================================================================================================================
def augment_bots_in_test_set(X_test, y_test, bots, cols):
df = pd.DataFrame(bots)
# df.columns = cols[:-1]
# df['Label'] = y_test
# if DEBUG:
# BOT_COUNTS = df['Label'].value_counts()[1]
# print('Bots in dataset:')
# print(BOT_COUNTS)
# print('Dataset before aug:')
# print(df.shape)
# for i in range(10):
# df = pd.concat([df, bots]).reset_index(drop=True) #Augmenting with real botnets
gen_data_set = df
X_test = gen_data_set[cols[:-1]].values
y_test = gen_data_set['Label'].values
# if DEBUG:
# BOT_COUNTS = gen_data_set['Label'].value_counts()[1]
# print('Bots in dataset:')
# print(BOT_COUNTS)
# print('Dataset after aug:')
# print(gen_data_set.shape)
return X_test, y_test
# ===============================================================================================================================
# ===============================================================================================================================
# ===============================================================================================================================
# def collect_evasions():
# SimpleMetrics(y_pred, y_test)
# evasions = np.where((y_pred == 0) & (y_test == 1), 1, 0)
# # print([i for i, x in enumerate(evasions) if x])
# ev_list = [i for i, x in enumerate(evasions) if x]
# evasions_list.extend(ev_list)
# # evasions_list = list(dict.fromkeys(evasions_list))
# print('Indices of Elements to be added: ' + str(ev_list))
# # print('evasion_list--> unrepeated: ' + str(evasions_list))
# print('evasion_list size --> : ' + str(len(evasions_list)) + '\n')
# df = dfEvasions
# for i in evasions_list:
# # print('\n' + str(test_set[i]) + '\n')
# # print('Length of this sample is: ' + str(len(test_set[i]))+ '\n')
# df = df.append(dict(zip(df.columns, test_set[i])), ignore_index=True)
# # dfEvasions = dfEvasions.append(dict(zip(dfEvasions.columns, test_set[i])), ignore_index=True)
# # print('Df: \n' + str(df) + '\n\n')
# # print('Evasions df: \n' + str(dfEvasions) + '\n\n')
# dfEvasions = pd.concat([dfEvasions, df])
# # dfEvasions = inverse_transform(dfEvasions)
# # print('Evasions df After Concat: \n' + str(dfEvasions) + '\n\n')
# # print(dfEvasions.describe(include = 'all'))
# print('=======================================>>>>>>>>>>>>>>>>>>>>>>>>')
# dfEvasions.to_csv(DATA_SET_PATH + str(classifier) +'_evasions.csv')
def predict_clf(G_Z, test_Normal, test_Bots, clf, ONLY_GZ=False):
pred_G_Z_clf = clf.predict(G_Z)
Ev_GZ_Bot_clf = round(
sum(pred_G_Z_clf) / G_Z.shape[0], 4
)
if ONLY_GZ == False:
pred_Normal_clf = clf.predict(test_Normal)
pred_Bots_clf = clf.predict(test_Bots)
N_acc_clf = round(
sum(pred_Normal_clf) / test_Normal.shape[0], 4
)
Ev_Real_Bot_clf = round(
sum(pred_Bots_clf) / test_Bots.shape[0], 4
) # predict bot being bot. If it maintains near 0 then it means it is bot because bot has been labeled as 1.
if ONLY_GZ == True:
return [Ev_GZ_Bot_clf]
return [N_acc_clf, Ev_Real_Bot_clf]