diff --git a/packages/redgeometry/src/primitives/complex.ts b/packages/redgeometry/src/primitives/complex.ts index 0ecc822..636decc 100644 --- a/packages/redgeometry/src/primitives/complex.ts +++ b/packages/redgeometry/src/primitives/complex.ts @@ -56,8 +56,8 @@ export class Complex { } public inverse(): Complex { - const d = this.lenSq(); - return new Complex(this.a / d, -this.b / d); + const div = this.lenSq(); + return new Complex(this.a / div, -this.b / div); } public isIdentity(): boolean { @@ -125,7 +125,7 @@ export class Complex { } public unit(): Complex { - const d = this.len(); - return new Complex(this.a / d, this.b / d); + const div = this.len(); + return new Complex(this.a / div, this.b / div); } } diff --git a/packages/redgeometry/src/primitives/quaternion.ts b/packages/redgeometry/src/primitives/quaternion.ts index bb07fa4..3cb6070 100644 --- a/packages/redgeometry/src/primitives/quaternion.ts +++ b/packages/redgeometry/src/primitives/quaternion.ts @@ -70,21 +70,21 @@ export class Quaternion { } public static fromRotationEuler(angleX: number, angleY: number, angleZ: number, order: RotationOrder): Quaternion { - const sinx = Math.sin(0.5 * angleX); - const cosx = Math.cos(0.5 * angleX); - const siny = Math.sin(0.5 * angleY); - const cosy = Math.cos(0.5 * angleY); - const sinz = Math.sin(0.5 * angleZ); - const cosz = Math.cos(0.5 * angleZ); - - const a1 = cosx * cosy * cosz; - const a2 = sinx * siny * sinz; - const b1 = sinx * cosy * cosz; - const b2 = cosx * siny * sinz; - const c1 = cosx * siny * cosz; - const c2 = sinx * cosy * sinz; - const d1 = cosx * cosy * sinz; - const d2 = sinx * siny * cosz; + const sinX = Math.sin(0.5 * angleX); + const cosX = Math.cos(0.5 * angleX); + const sinY = Math.sin(0.5 * angleY); + const cosY = Math.cos(0.5 * angleY); + const sinZ = Math.sin(0.5 * angleZ); + const cosZ = Math.cos(0.5 * angleZ); + + const a1 = cosX * cosY * cosZ; + const a2 = sinX * sinY * sinZ; + const b1 = sinX * cosY * cosZ; + const b2 = cosX * sinY * sinZ; + const c1 = cosX * sinY * cosZ; + const c2 = sinX * cosY * sinZ; + const d1 = cosX * cosY * sinZ; + const d2 = sinX * sinY * cosZ; switch (order) { case RotationOrder.XYZ: { @@ -166,6 +166,13 @@ export class Quaternion { } } + /** + * Returns a quaternion with values following the `XYZW` notation. + */ + public static fromXYZW(x: number, y: number, z: number, w: number): Quaternion { + return new Quaternion(w, x, y, z); + } + public add(q: Quaternion): Quaternion { return new Quaternion(this.a + q.a, this.b + q.b, this.c + q.c, this.d + q.d); } @@ -199,22 +206,38 @@ export class Quaternion { return this.a === q.a && this.b === q.b && this.c === q.c && this.d === q.d; } + /** + * Returns the euler angles of the quaternion in `XYZ` order. + */ public getEulerAngles(): { x: number; y: number; z: number } { - const qa = this.a; - const qb = this.b; - const qc = this.c; - const qd = this.d; + const a = this.a; + const b = this.b; + const c = this.c; + const d = this.d; + + const aa = a * a; + const bb = b * b; + const cc = c * c; + const dd = d * d; + + const ab = a * b; + const cd = c * d; + const x = Math.atan2(ab + ab + cd + cd, aa - bb - cc + dd); + + const ad = a * d; + const bc = b * c; + const z = Math.atan2(ad + ad + bc + bc, aa + bb - cc - dd); - const x = Math.atan2(2 * (qa * qb + qc * qd), qa * qa - qb * qb - qc * qc + qd * qd); - const y = Math.asin(2 * (qa * qc - qb * qd)); - const z = Math.atan2(2 * (qa * qd + qb * qc), qa * qa + qb * qb - qc * qc - qd * qd); + const ac = a * c; + const bd = b * d; + const y = Math.asin(ac + ac - bd - bd); return { x, y, z }; } public inverse(): Quaternion { - const d = this.lenSq(); - return new Quaternion(this.a / d, -this.b / d, -this.c / d, -this.d / d); + const div = this.lenSq(); + return new Quaternion(this.a / div, -this.b / div, -this.c / div, -this.d / div); } public isIdentity(): boolean { @@ -288,9 +311,9 @@ export class Quaternion { ); } - public rotateX(angleX: number): void { - const sin = Math.sin(0.5 * angleX); - const cos = Math.cos(0.5 * angleX); + public rotateX(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -306,9 +329,9 @@ export class Quaternion { this.d = cos * d + sin * c; } - public rotateXPre(angleX: number): void { - const sin = Math.sin(0.5 * angleX); - const cos = Math.cos(0.5 * angleX); + public rotateXPre(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -324,9 +347,9 @@ export class Quaternion { this.d = d * cos - c * sin; } - public rotateY(angleY: number): void { - const sin = Math.sin(0.5 * angleY); - const cos = Math.cos(0.5 * angleY); + public rotateY(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -342,9 +365,9 @@ export class Quaternion { this.d = cos * d - sin * b; } - public rotateYPre(angleY: number): void { - const sin = Math.sin(0.5 * angleY); - const cos = Math.cos(0.5 * angleY); + public rotateYPre(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -360,9 +383,9 @@ export class Quaternion { this.d = d * cos + b * sin; } - public rotateZ(angleZ: number): void { - const sin = Math.sin(0.5 * angleZ); - const cos = Math.cos(0.5 * angleZ); + public rotateZ(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -378,9 +401,9 @@ export class Quaternion { this.d = cos * d + sin * a; } - public rotateZPre(angleZ: number): void { - const sin = Math.sin(0.5 * angleZ); - const cos = Math.cos(0.5 * angleZ); + public rotateZPre(angle: number): void { + const sin = Math.sin(0.5 * angle); + const cos = Math.cos(0.5 * angle); const a = this.a; const b = this.b; const c = this.c; @@ -409,7 +432,7 @@ export class Quaternion { } public unit(): Quaternion { - const d = this.len(); - return new Quaternion(this.a / d, this.b / d, this.c / d, this.d / d); + const div = this.len(); + return new Quaternion(this.a / div, this.b / div, this.c / div, this.d / div); } }