-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecision_tree_classification.py
43 lines (36 loc) · 1.54 KB
/
decision_tree_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.metrics import confusion_matrix
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
dataset = pd.read_csv('social_network_ads.csv')
X = dataset.iloc[:, [2, 3]].values
Y = dataset.iloc[:, 4].values
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
print(y_pred)
cm = confusion_matrix(y_test, y_pred)
print(cm)
X_set, y_set = x_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()