We provide evaluation scripts to test offshelf tracking methods on the EgoHumans (ego-rgb) test set.
- Please refer to the test script under
./scripts/benchmarks/tracking/0_test_tracking.sh
- Modify the variables
$USE_GT_BBOX
and$METHOD
to select a detection mode and tracker for evaluation. - Modify the variable
$SEQUENCE_ROOT_DIR
to point to the absolute path to the data. - Modify the variable
$SAVE_BIG_SEQUENCE_NAME
to select the combination of big sequences used for evaluations. - Modify the variable
$MODE
to be eitherego_rgb
,ego_slam
orexo
. The code is tested withego_rgb
mode. - Modify the variable
$EVAL_TYPE
to be eithereval
,vis
ordebug
for evaluation, qualitative visualization or interactive debugging. - Run the script
cd scripts/benchmarks/tracking
chmod +x 0_test_tracking.sh
./0_test_tracking.sh
- The code will create a coco_track.pkl file under the folder
$SEQUENCE_ROOT_DIR/benchmark/$SAVE_BIG_SEQUENCE_NAME/all/output/tracking/$METHOD/$MODE_$USE_GT_BBOX
.
We report the tracking results on the Ego-RGB images using YOLOX bounding box detections. The metrics have a variance on 1% from the published results in Table. 1 of the paper due to pytorch upgrades, however the trends are similar.
Method | IDF1 | MOTA | MOTP | FP | FN | IDSw |
---|---|---|---|---|---|---|
Bytetrack | 50.9 | 59.7 | 78.9 | 20976 | 8124 | 2680 |
SimpleBaseline | 62.0 | 59.5 | 78.8 | 22901 | 7821 | 1195 |