We provide annotation conversion scripts to convert our video annotations into the more widely used COCO video format. This allows you to use our annotations with pre-existing methods and codebases for training and testing.
Additionally, you can skip this step by downloading the annotation files for our test set from link.
Please download the benchmark
folder and place under ./data
at the same level as other big sequence folders like 01_tagging ... 07_tennis
.
- We use an offshelf monocular depth estimator MiDas for 3D tracking using SimpleBaseline.
- Please install midas in a separate conda environment using the installation script under
./egohumans/external/midas/scripts/_install/conda.sh
- This will create a conda environment named
midas
. Download the model weights for DPT-Large following the official instructions. - Run the script under
./scripts/benchmarks/create_video_benchmarks/0_get_depth.sh
to run the depth estimator on undistorted ego-RGB Aria images. - Modify the variable
$SEQUENCE_ROOT_DIR
to point to the absolute path to the data. - Modify the variables
$BIG_SEQUENCE
and$SEQUENCE
to the sequence and subsequence used for annotation conversion. - Run the script
cd scripts/benchmarks/create_video_benchmark
chmod +x 0_get_depth.sh
./0_get_depth.sh
- The code will save the MiDas depth estimates as .png and .pfm files under
$SEQUENCE_ROOT_DIR/$BIG_SEQUENCE/$SEQUENCE/processed_data/depth
directory.
- Please use the provided annotation conversion script under
./scripts/benchmarks/create_video_benchmarks/1_convert_to_coco_video_format.sh
- Modify the variable
$SEQUENCE_ROOT_DIR
to point to the absolute path to the data. - Modify the variables
$BIG_SEQUENCE
and$SEQUENCE
to the sequence and subsequence used for annotation conversion. - Run the script
cd scripts/benchmarks/create_video_benchmark
chmod +x 1_convert_to_coco_video_format.sh
./1_convert_to_coco_video_format.sh
- The code will create three json and three pkl files under the
$SEQUENCE_ROOT_DIR/benchmark/$BIG_SEQUENCE/$SEQUENCE/coco_track
directory.- tracking_ego_rgb.json: Bounding box + 3D root location using MiDas + Person ID annotations for RGB ego images.
- tracking_ego_slam.json.json: Bounding box + Person ID annotations for Grayscale (Left + Right) ego images.
- tracking_exo.json: Bounding box + Person ID annotations for RGB exo images.
- detections_ego_rgb.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on RGB ego images.
- detections_ego_slam.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on Grayscale (Left + Right) ego images.
- detections_exo.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on RGB exo images.
- We combine video annotations from multiple subsequences into single json files for ease of use.
- Please use the provided video annotation concatenation script under
./scripts/benchmarks/create_image_benchmarks/2_concatenate_coco_video_format.sh
- Modify the variable
$SEQUENCE_ROOT_DIR
to point to the absolute path to the data. - Modify the variable
SAVE_BIG_SEQUENCE_NAME
to be a:
separated list of all the big sequences you wish to concatenate. - Modify the variable
BIG_SEQUENCES
to be a:
separated list of the big sequence name, repeat depending on how many subsequences it contains. - Modify the variable
SEQUENCES
to be a:
separated list of the subsequence names. - Run the script
cd scripts/benchmarks/create_video_benchmark
chmod +x 2_concatenate_coco_video_format.sh
./2_concatenate_coco_image_format.sh
- The code will create three json and three pkl files under the
$SEQUENCE_ROOT_DIR/benchmark/$SAVE_BIG_SEQUENCE_NAME/all/coco_track
directory.- tracking_ego_rgb.json: Bounding box + 3D root location using MiDas + Person ID annotations for RGB ego images.
- tracking_ego_slam.json.json: Bounding box + Person ID annotations for Grayscale (Left + Right) ego images.
- tracking_exo.json: Bounding box + Person ID annotations for RGB exo images.
- detections_ego_rgb.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on RGB ego images.
- detections_ego_slam.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on Grayscale (Left + Right) ego images.
- detections_exo.pkl: Helper information when evaluating 3D tracking using SimpleBaseline on RGB exo images.