-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPredictorBase.py
38 lines (28 loc) · 1.03 KB
/
PredictorBase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from abc import abstractmethod
from Ratings import Ratings
class PredictorBase(object):
def train(self, train_ratings):
ratings = train_ratings
ratings.build_model()
@abstractmethod
def predict(self, user_id, item_id):
pass
def evaluate(self, test_ratings: Ratings):
"""
:type test_ratings: Ratings
"""
results = []
if test_ratings is None:
raise Exception('PredictorBase: Evaluate: parameter testRatings could not be null.')
if len(test_ratings.values) == 0:
return results
# loop into all test data
for i in range(test_ratings.values_count):
# run predict (of subclass ex: global_avg) on (userid,itemid)
user_id = test_ratings.users[i]
item_id = test_ratings.items[i]
rating = test_ratings.values[i]
# result is a prediction trial
# add result to results
results.append(self.predict(user_id, item_id, rating))
return results