forked from Newbeeer/Poisson_flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethods.py
332 lines (269 loc) · 10.3 KB
/
methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""Abstract SDE classes, Reverse SDE, and VE/VP SDEs."""
import abc
import torch
import numpy as np
class SDE(abc.ABC):
"""SDE abstract class. Functions are designed for a mini-batch of inputs."""
def __init__(self, N):
"""Construct an SDE.
Args:
N: number of discretization time steps.
"""
super().__init__()
self.N = N
@property
@abc.abstractmethod
def T(self):
"""End time of the SDE."""
pass
@abc.abstractmethod
def sde(self, x, t):
pass
@abc.abstractmethod
def marginal_prob(self, x, t):
"""Parameters to determine the marginal distribution of the SDE, $p_t(x)$."""
pass
@abc.abstractmethod
def prior_sampling(self, shape):
"""Generate one sample from the prior distribution, $p_T(x)$."""
pass
@abc.abstractmethod
def prior_logp(self, z):
"""Compute log-density of the prior distribution.
Useful for computing the log-likelihood via probability flow ODE.
Args:
z: latent code
Returns:
log probability density
"""
pass
def discretize(self, x, t):
"""Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.
Useful for reverse diffusion sampling and probabiliy flow sampling.
Defaults to Euler-Maruyama discretization.
Args:
x: a torch tensor
t: a torch float representing the time step (from 0 to `self.T`)
Returns:
f, G
"""
dt = 1 / self.N
drift, diffusion = self.sde(x, t)
f = drift * dt
G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device))
return f, G
def reverse(self, net_fn, probability_flow=False):
"""Create the reverse-time SDE/ODE.
Args:
net_fn: a z-dependent PFGM that takes x and z and returns the normalized Poisson field.
Or a time-dependent score-based model that takes x and t and returns the score.
probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
"""
N = self.N
T = self.T
sde_fn = self.sde
discretize_fn = self.discretize
# Build the class for reverse-time SDE.
class RSDE(self.__class__):
def __init__(self):
self.N = N
self.probability_flow = probability_flow
@property
def T(self):
return T
def sde(self, x, t):
"""Create the drift and diffusion functions for the reverse SDE/ODE."""
drift, diffusion = sde_fn(x, t)
score = net_fn(x.float(), t.float())
drift = drift - diffusion[:, None, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
# Set the diffusion function to zero for ODEs.
diffusion = torch.zeros_like(diffusion) if self.probability_flow else diffusion
return drift, diffusion
def discretize(self, x, t):
"""Create discretized iteration rules for the reverse diffusion sampler."""
f, G = discretize_fn(x, t)
rev_f = f - G[:, None, None, None] ** 2 * net_fn(x, t) * (0.5 if self.probability_flow else 1.)
rev_G = torch.zeros_like(G) if self.probability_flow else G
return rev_f, rev_G
return RSDE()
class VPSDE(SDE):
def __init__(self, config, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
self.config = config
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
drift = -0.5 * beta_t[:, None, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff[:, None, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
logps = -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2, 3)) / 2.
return logps
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
f = torch.sqrt(alpha)[:, None, None, None] * x - x
G = sqrt_beta
return f, G
class subVPSDE(SDE):
def __init__(self, config, beta_min=0.1, beta_max=20, N=1000):
"""Construct the sub-VP SDE that excels at likelihoods.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.config = config
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
drift = -0.5 * beta_t[:, None, None, None] * x
discount = 1. - torch.exp(-2 * self.beta_0 * t - (self.beta_1 - self.beta_0) * t ** 2)
diffusion = torch.sqrt(beta_t * discount)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff)[:, None, None, None] * x
std = 1 - torch.exp(2. * log_mean_coeff)
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
return -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2, 3)) / 2.
class VESDE(SDE):
def __init__(self, config, sigma_min=0.01, sigma_max=50, N=1000):
"""Construct a Variance Exploding SDE.
Args:
sigma_min: smallest sigma.
sigma_max: largest sigma.
N: number of discretization steps
"""
super().__init__(N)
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.discrete_sigmas = torch.exp(torch.linspace(np.log(self.sigma_min), np.log(self.sigma_max), N))
self.N = N
self.config = config
@property
def T(self):
return 1
def sde(self, x, t):
sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
drift = torch.zeros_like(x)
diffusion = sigma * torch.sqrt(torch.tensor(2 * (np.log(self.sigma_max) - np.log(self.sigma_min)),
device=t.device))
return drift, diffusion
def marginal_prob(self, x, t):
std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
mean = x
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape) * self.sigma_max
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
return -N / 2. * np.log(2 * np.pi * self.sigma_max ** 2) - torch.sum(z ** 2, dim=(1, 2, 3)) / (2 * self.sigma_max ** 2)
def discretize(self, x, t):
"""SMLD(NCSN) discretization."""
timestep = (t * (self.N - 1) / self.T).long()
sigma = self.discrete_sigmas.to(t.device)[timestep]
adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t),
self.discrete_sigmas[timestep - 1].to(t.device))
f = torch.zeros_like(x)
G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2)
return f, G
class Poisson():
def __init__(self, config):
"""Construct a PFGM.
Args:
config: configurations
"""
self.config = config
self.N = config.sampling.N
@property
def M(self):
return self.config.training.M
def prior_sampling(self, shape):
"""
Sampling initial data from p_prior on z=z_max hyperplane.
See Section 3.3 in PFGM paper
"""
# Sample the radius from p_radius (details in Appendix A.4 in the PFGM paper)
max_z = self.config.sampling.z_max
N = self.config.data.channels * self.config.data.image_size * self.config.data.image_size + 1
# Sampling form inverse-beta distribution
samples_norm = np.random.beta(a=N / 2. - 0.5, b=0.5, size=shape[0])
inverse_beta = samples_norm / (1 - samples_norm)
# Sampling from p_radius(R) by change-of-variable
samples_norm = np.sqrt(max_z ** 2 * inverse_beta)
# clip the sample norm (radius)
samples_norm = np.clip(samples_norm, 1, self.config.sampling.upper_norm)
samples_norm = torch.from_numpy(samples_norm).cuda().view(len(samples_norm), -1)
# Uniformly sample the angle direction
gaussian = torch.randn(shape[0], N - 1).cuda()
unit_gaussian = gaussian / torch.norm(gaussian, p=2, dim=1, keepdim=True)
# Radius times the angle direction
init_samples = unit_gaussian * samples_norm
return init_samples.float().view(len(init_samples), self.config.data.num_channels,
self.config.data.image_size, self.config.data.image_size)
def ode(self, net_fn, x, t):
z = np.exp(t.mean().cpu())
if self.config.sampling.vs:
print(z)
x_drift, z_drift = net_fn(x, torch.ones((len(x))).cuda() * z)
x_drift = x_drift.view(len(x_drift), -1)
# Substitute the predicted z with the ground-truth
# Please see Appendix B.2.3 in PFGM paper (https://arxiv.org/abs/2209.11178) for details
z_exp = self.config.sampling.z_exp
if z < z_exp and self.config.training.gamma > 0:
data_dim = self.config.data.image_size * self.config.data.image_size * self.config.data.channels
sqrt_dim = np.sqrt(data_dim)
norm_1 = x_drift.norm(p=2, dim=1) / sqrt_dim
x_norm = self.config.training.gamma * norm_1 / (1 -norm_1)
x_norm = torch.sqrt(x_norm ** 2 + z ** 2)
z_drift = -sqrt_dim * torch.ones_like(z_drift) * z / (x_norm + self.config.training.gamma)
# Predicted normalized Poisson field
v = torch.cat([x_drift, z_drift[:, None]], dim=1)
dt_dz = 1 / (v[:, -1] + 1e-5)
dx_dt = v[:, :-1].view(len(x), self.config.data.num_channels,
self.config.data.image_size, self.config.data.image_size)
dx_dz = dx_dt * dt_dz.view(-1, *([1] * len(x.size()[1:])))
# dx/dt_prime = z * dx/dz
dx_dt_prime = z * dx_dz
return dx_dt_prime