forked from upb-lea/gym-electric-motor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classic_controllers_dc_motor_example.py
65 lines (52 loc) · 2.52 KB
/
classic_controllers_dc_motor_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from classic_controllers import Controller
from externally_referenced_state_plot import ExternallyReferencedStatePlot
import gym_electric_motor as gem
from gym_electric_motor.visualization import MotorDashboard
if __name__ == '__main__':
"""
motor type: 'PermExDc' Permanently Excited DC Motor
'ExtExDc' Externally Excited MC Motor
'SeriesDc' DC Series Motor
'ShuntDc' DC Shunt Motor
control type: 'SC' Speed Control
'TC' Torque Control
'CC' Current Control
action_type: 'Cont' Continuous Action Space
'Finite' Discrete Action Space
"""
motor_type = 'PermExDc'
control_type = 'TC'
action_type = 'Cont'
motor = action_type + '-' + control_type + '-' + motor_type + '-v0'
if motor_type in ['PermExDc', 'SeriesDc']:
states = ['omega', 'torque', 'i', 'u']
elif motor_type == 'ShuntDc':
states = ['omega', 'torque', 'i_a', 'i_e', 'u']
elif motor_type == 'ExtExDc':
states = ['omega', 'torque', 'i_a', 'i_e', 'u_a', 'u_e']
else:
raise KeyError(motor_type + ' is not available')
# definition of the plotted variables
external_ref_plots = [ExternallyReferencedStatePlot(state) for state in states]
# initialize the gym-electric-motor environment
env = gem.make(motor, visualization=MotorDashboard(additional_plots=external_ref_plots), render_mode="figure_once")
"""
initialize the controller
Args:
environment gym-electric-motor environment
external_ref_plots (optional) plots of the environment, to plot all reference values
stages (optional) structure of the controller
automated_gain (optional) if True (default), the controller will be tuned automatically
a (optional) tuning parameter of the symmetrical optimum (default: 4)
"""
visualization = MotorDashboard(additional_plots=external_ref_plots)
controller = Controller.make(env, external_ref_plots=external_ref_plots)
(state, reference), _ = env.reset(seed = None)
# simulate the environment
for i in range(10001):
action = controller.control(state, reference)
(state, reference), reward, terminated, truncated, _ = env.step(action)
if terminated:
env.reset()
controller.reset()
env.close()