-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
184 lines (171 loc) · 8.22 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import os
import numpy as np
import math
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#save DQN models
def save_dqn_model(rl_model,epoch,model_name):
save_dir = os.path.join('checkpoints',model_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_path = os.path.join(save_dir, 'model_latest.pt')
d = {
'policy_net': rl_model.policy_net.state_dict(),
'target_net': rl_model.target_net.state_dict(),
'replay_memory': rl_model.memory,
'epoch': epoch,
'eps_threshold' : rl_model.eps_threshold
}
torch.save(d,file_path)
#load DQN model
def load_dqn_model(rl_model,model_name,strict=True,device=None):
path = os.path.join('checkpoints',model_name,'model_latest.pt')
ckpt = torch.load(path,map_location=device)
epoch = ckpt['epoch']
rl_model.policy_net.load_state_dict(ckpt['policy_net'],strict=strict)
rl_model.target_net.load_state_dict(ckpt['target_net'],strict=strict)
rl_model.eps_threshold = ckpt['eps_threshold']
if args.resume_buffer:
rl_model.memory = ckpt['replay_memory']
return epoch
#save stress-strain/CVAE model (works for a single standalone NN model)
def save_model(model,path):
torch.save(model.state_dict(),path)
def load_model(model,path,strict=True,device=device):
model.load_state_dict(torch.load(path,map_location=device),strict=strict)
#sample structure using an RL agent
def sample_structure(env,rl_model,seq_len,total_action,cur_step=10000,first_cur_random=True,first_cur_fixed=None):
cur_state = env.init_observation(S0=True)
temp_buff = []
act_taken=[]
for t in range(seq_len):
action = rl_model.select_action(cur_state.rl_feature.float(),cur_step).item()
if first_cur_random == True and t == 0:
action = random.sample(total_action,1)[0]
if first_cur_fixed != None and t == 0:
action = first_cur_fixed
if t == 0:
val,next_state = env.sample_seq(cur_state,action=action,is_init=True,isterminal=False)
elif t > 0 and t < seq_len - 1:
val,next_state = env.sample_seq(cur_state,action=action,is_init=False,isterminal=False)
else:
val,next_state = env.sample_seq(cur_state,action=action,is_init=False,isterminal=True)
temp_buff.append(val)
act_taken.append(val[1].item())
if t < seq_len-1:
cur_state = next_state
return cur_state,val,temp_buff,act_taken
#sample a random structure
def sample_random_structure(env,seq_len,total_action):
cur_state = env.init_observation(S0=True)
temp_buff = []
act_taken=[]
for t in range(seq_len):
action = random.sample(total_action,1)[0]
if t == 0:
val,next_state = env.sample_seq(cur_state,action=action,is_init=True,isterminal=False)
elif t > 0 and t < seq_len - 1:
val,next_state = env.sample_seq(cur_state,action=action,is_init=False,isterminal=False)
else:
val,next_state = env.sample_seq(cur_state,action=action,is_init=False,isterminal=True)
temp_buff.append(val)
act_taken.append(val[1].item())
if t < seq_len-1:
cur_state = next_state
return cur_state,val,temp_buff,act_taken
#sample a batch of structures from RL agent to compute expected reward and Q value of terminal state
def estimate_random_policy(env,seq_len,total_action,samples=64):
r_trj = []
str_trj = []
for i in range(samples):
cur_state, cur_state_info,_,_ = sample_random_structure(env,seq_len,total_action)
r_trj.append(cur_state.reward_val)
str_trj.append(cur_state.strain_val)
r_trj = np.asarray(r_trj)
str_trj = np.asarray(str_trj)
return r_trj,str_trj
#sample a batch of structures from RL agent to compute expected reward and Q value of terminal state
def estimate_policy_reward(env,rl_model,seq_len,total_action,cur_step=10000,first_cur_random=True,samples=64):
q_trj = []
r_trj = []
str_trj = []
for i in range(samples):
cur_state, cur_state_info,_,_ = sample_structure(env,rl_model,seq_len,total_action,cur_step,first_cur_random)
q_trj.append(rl_model.predict_Q(cur_state_info[0].float(),cur_state_info[1]))
r_trj.append(cur_state.reward_val)
str_trj.append(cur_state.strain_val)
q_trj = np.asarray(q_trj)
r_trj = np.asarray(r_trj)
str_trj = np.asarray(str_trj)
return q_trj,r_trj,str_trj
#sample the hidden feature from the model from time=3
def viz_hidden_3(env,rl_model,seq_len,action_seq,cur_step=10000):
cur_state = env.init_observation(S0=True)
q_seq = []
hh = []
cut_loc = []
for row1 in action_seq:
val,row1_state = env.sample_seq(cur_state,action=row1,is_init=True,isterminal=False) #adds 1st cut
for row2 in action_seq:
val2,row2_state = env.sample_seq(row1_state,action=row2,is_init=False,isterminal=False) #adds 2nd cut
for row3 in action_seq:
val3,row3_state = env.sample_seq(row2_state,action=row3,is_init=False,isterminal=False) #adds 3rd cut
#follow the policy and sample the next best action
with torch.no_grad():
action = rl_model.policy_net(row3_state.rl_feature.float()).max(1)[1].view(1, 1)
hidden_X = rl_model.policy_net.x_f2.detach().view(-1).numpy()
Q_val = rl_model.predict_Q(row3_state.rl_feature.float(),action)
q_seq.append(Q_val)
hh.append(hidden_X)
cut_loc.append([row1,row2,row3,action.item()])
hh = np.asarray(hh)
return hh,q_seq,cut_loc
#sample the hidden feature from the model from time=2
def viz_hidden_2(env,rl_model,seq_len,action_seq,cur_step=10000):
cur_state = env.init_observation(S0=True)
q_seq = []
hh = []
cut_loc = []
for row1 in action_seq:
val,row1_state = env.sample_seq(cur_state,action=row1,is_init=True,isterminal=False) #adds 1st cut
for row2 in action_seq:
val2,row2_state = env.sample_seq(row1_state,action=row2,is_init=False,isterminal=False) #adds 2nd cut
#follow the policy and sample the next best action
with torch.no_grad():
action = rl_model.policy_net(row2_state.rl_feature.float()).max(1)[1].view(1, 1)
hidden_X = rl_model.policy_net.x_f2.detach().view(-1).numpy()
Q_val = rl_model.predict_Q(row2_state.rl_feature.float(),action)
q_seq.append(Q_val)
hh.append(hidden_X)
cut_loc.append([row1,row2,action.item(),None])
hh = np.asarray(hh)
return hh,q_seq,cut_loc
#sample the hidden feature from the model from time=4
def viz_hidden_4(env,rl_model,seq_len,action_seq,cur_step=10000):
cur_state = env.init_observation(S0=True)
q_seq = []
hh = []
cut_loc = []
for row1 in action_seq:
val,row1_state = env.sample_seq(cur_state,action=row1,is_init=True,isterminal=False) #adds 1st cut
for row2 in action_seq:
val2,row2_state = env.sample_seq(row1_state,action=row2,is_init=False,isterminal=False) #adds 2nd cut
for row3 in action_seq:
val3,row3_state = env.sample_seq(row2_state,action=row3,is_init=False,isterminal=False) #adds 3rd cut
for row4 in action_seq:
val4,row4_state = env.sample_seq(row3_state,action=row4,is_init=False,isterminal=False) #adds 4rd cut
#follow the policy and sample the next best action
with torch.no_grad():
if seq_len > 5:
action = rl_model.policy_net(row4_state.rl_feature.float()).max(1)[1].view(1, 1)
else:
action = torch.tensor([[0]],dtype=torch.long)
_ = rl_model.policy_net(row4_state.rl_feature.float())
hidden_X = rl_model.policy_net.x_f2.detach().view(-1).numpy()
Q_val = rl_model.predict_Q(row4_state.rl_feature.float(),action)
q_seq.append(Q_val)
hh.append(hidden_X)
cut_loc.append([row1,row2,row3,action.item()])
hh = np.asarray(hh)
return hh,q_seq,cut_loc