-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_density.py
68 lines (61 loc) · 2.27 KB
/
train_density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import torch
from torch.utils import data
from dataloader import CVD_Dataset
from desity_estimator import encode_structure, model_cvd_series, decode_structure
from util import save_model
import sys
import os
model_name = sys.argv[1]
num_epochs = 1000
sigma_type = 'const'
sigma = 0.01
loss_type='mle'
#model parameters
net_parameters = {'input_dim':7,'output_dim':72,'hidden_dim':128,'batch_size':32}
print("model_name: ",model_name)
path = os.path.join('checkpoints',model_name)
if not os.path.exists(path):
os.makedirs(path)
log_file = os.path.join(path,'log.txt')
log = open(log_file,'w')
#load training data
Structure_train_np = np.load('Data/Train/CVD_Structure.npy')
Condition_train_np = np.load('Data/Train/CVD_Condition.npy')
Structure_train = torch.tensor(Structure_train_np,dtype=torch.float32)
Condition_train = torch.tensor(Condition_train_np,dtype=torch.float32)
N_train = Structure_train_np.shape[0]
print("Number of training examples: ",N_train)
#data loader for training data
train_data = CVD_Dataset(structure=Structure_train,condtion=Condition_train)
train_loader = data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=1)
#model traininig parameters
encoder=encode_structure(net_parameters)
decoder = decode_structure(net_parameters)
model = model_cvd_series(encoder,decoder,net_parameters,loss_type=loss_type,sigma=sigma,sigma_type=sigma_type)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
#train the model
print("=====Training Starts======")
tot_loss = []
for n in range(num_epochs):
model.train()
for i,batch in enumerate(train_loader):
S_ = batch['structure']
C_ = batch['condtion']
Y_ = batch['P_class']
optimizer.zero_grad()
model.zero_grad()
model.init_hidden()
logit,v=model(Y_,C_)
loss = model.cal_loss(logit,v,Y_)
loss.backward()
optimizer.step()
tot_loss.append(loss.item())
if i % 50 == 0:
print("epoch: {0:12d} step: {1:12d} loss = {2:12.6f}".format(n,i,loss.item()))
log.write("epoch: {0:12d} step: {1:12d} loss = {2:12.6f} \n".format(n,i,loss.item()))
#save final model
save_model(model,model_name)
#save training loss
np.save(path+'/'+'tot_loss',tot_loss)
print("=====Training Ends======")