-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_loop.py
151 lines (125 loc) · 5.17 KB
/
train_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import time
def normal_noise_like(a, scale):
return a.new(a.size()).normal_(0, scale)
def output_bps_every_60s(t_start, b_start, t_current, b_current):
t_duration = t_current - t_start
if t_duration > 60:
n_batches = b_current - b_start
print('bps', float(n_batches) / float(t_duration))
return t_current, b_current
return t_start, b_start
def train(logger,
tag_group,
device,
model,
optimizer,
gradient_clip,
lambda_padding,
lambda_fit,
lambda_latent,
lambda_backward,
loss_function_padding,
loss_function_fit,
loss_function_latent,
loss_function_backward,
loss_factor_function_backward,
train_loader,
sample_fake_latent,
sample_real_latent,
sample_fake_backward,
sample_real_backward,
i_epoch,
global_step):
# dependent on the epoch, this *ramps up*, the longer we train, until it reaches 1
# this is IMPORTANT! otherwise other losses are overwhelmed!
loss_factor_backward = loss_factor_function_backward(i_epoch)
t_start = time.time()
b_start = 0
for b_current, batch in enumerate(train_loader):
global_step += 1
###################################################
# train adversarial loss for latents
lf_train_latent_loss = 0
lf_train_backward_loss = 0
if loss_function_latent.is_adversarial():
model.eval()
lf_train_latent_loss = loss_function_latent.train(
sample_fake_latent,
sample_real_latent
)
###################################################
# train adversarial loss for backward
if loss_function_backward.is_adversarial():
model.eval()
lf_train_backward_loss = loss_function_backward.train(
sample_fake_backward,
sample_real_backward
)
###################################################
# train the invertible model itself
model.train()
x, y = batch['x'].to(device), batch['y'].to(device)
optimizer.zero_grad()
###################################################
# encode step
z_hat, zy_hat_padding, y_hat = model.encode(x)
zy_padding_noise = normal_noise_like(zy_hat_padding, model.zeros_noise_scale)
loss_zy_padding = lambda_padding * loss_function_padding(zy_hat_padding, zy_padding_noise)
y_noisy = y + normal_noise_like(y, model.y_noise_scale)
loss_fit = lambda_fit * loss_function_fit(y_hat, y_noisy)
# shorten output, and remove gradients wrt y, for latent loss
zy_hat_detached = torch.cat([z_hat, y_hat.detach()], dim=1)
z_proposal = normal_noise_like(z_hat, 1)
zy = torch.cat([z_proposal, y_noisy], dim=1)
loss_latent = lambda_latent * loss_function_latent(zy_hat_detached, zy)
###################################################
# decode step
z_hat_noisy = z_hat + normal_noise_like(z_hat, model.y_noise_scale)
y_noisy = y + normal_noise_like(y, model.y_noise_scale)
x_hat, x_hat_padding = model.decode(
z_hat_noisy,
y_noisy
)
z_proposal = normal_noise_like(z_hat, 1)
x_hat_sampled, x_hat_sampled_padding = model.decode(
z_proposal,
y_noisy
)
loss_backward = (lambda_backward *
loss_factor_backward *
loss_function_backward(x_hat_sampled, x))
loss_x_hat = (0.5 *
lambda_padding *
loss_function_padding(x_hat, x))
x_hat_padding_noise = normal_noise_like(x_hat_padding, model.zeros_noise_scale)
loss_x_padding = (0.5 *
lambda_padding *
loss_function_padding(x_hat_padding, x_hat_padding_noise))
loss = (loss_fit +
loss_latent +
loss_backward +
loss_x_hat +
loss_x_padding +
loss_zy_padding)
loss.backward()
# GRADIENT CLIPPING!
for p in model.parameters():
p.grad.data.clamp_(-gradient_clip, gradient_clip)
optimizer.step()
to_log = dict(
loss_factor_backward=loss_factor_backward,
loss_fit=loss_fit.detach().cpu().item(),
loss_latent=loss_latent.detach().cpu().item(),
loss_backward=loss_backward.detach().cpu().item(),
loss_x_hat=loss_x_hat.detach().cpu().item(),
loss_x_padding=loss_x_padding.detach().cpu().item(),
loss_zy_padding=loss_zy_padding.detach().cpu().item(),
loss=loss.detach().cpu().item(),
lf_train_latent_loss=lf_train_latent_loss,
lf_train_backward_loss=lf_train_backward_loss
)
for key, value in to_log.items():
logger.add_scalar('{}/{}'.format(tag_group, key), value, global_step=global_step)
t_start, b_start = output_bps_every_60s(t_start, b_start, time.time(), b_current)
return global_step