Skip to content

Python SDK for Agent AI Observability, Monitoring and Evaluation Framework. Includes features like agent, llm and tools tracing, debugging multi-agentic system, self-hosted dashboard and advanced analytics with timeline and execution graph view

License

Notifications You must be signed in to change notification settings

raga-ai-hub/RagaAI-Catalyst

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RagaAI Catalyst  GitHub release (latest by date) GitHub stars Issues

RagaAI Catalyst is a comprehensive platform designed to enhance the management and optimization of LLM projects. It offers a wide range of features, including project management, dataset management, evaluation management, trace management, prompt management, synthetic data generation, and guardrail management. These functionalities enable you to efficiently evaluate, and safeguard your LLM applications.

Table of Contents

Installation

To install RagaAI Catalyst, you can use pip:

pip install ragaai-catalyst

Configuration

Before using RagaAI Catalyst, you need to set up your credentials. You can do this by setting environment variables or passing them directly to the RagaAICatalyst class:

from ragaai_catalyst import RagaAICatalyst

catalyst = RagaAICatalyst(
    access_key="YOUR_ACCESS_KEY",
    secret_key="YOUR_SECRET_KEY",
    base_url="BASE_URL"
)

Note: Authetication to RagaAICatalyst is necessary to perform any operations below

Usage

Project Management

Create and manage projects using RagaAI Catalyst:

# Create a project
project = catalyst.create_project(
    project_name="Test-RAG-App-1",
    usecase="Chatbot"
)

# Get project usecases
catalyst.project_use_cases()

# List projects
projects = catalyst.list_projects()
print(projects)

Dataset Management

Manage datasets efficiently for your projects:

from ragaai_catalyst import Dataset

# Initialize Dataset management for a specific project
dataset_manager = Dataset(project_name="project_name")

# List existing datasets
datasets = dataset_manager.list_datasets()
print("Existing Datasets:", datasets)

# Create a dataset from CSV
dataset_manager.create_from_csv(
    csv_path='path/to/your.csv',
    dataset_name='MyDataset',
    schema_mapping={'column1': 'schema_element1', 'column2': 'schema_element2'}
)

# Get project schema mapping
dataset_manager.get_schema_mapping()

For more detailed information on Dataset Management, including CSV schema handling and advanced usage, please refer to the Dataset Management documentation.

Evaluation

Create and manage metric evaluation of your RAG application:

from ragaai_catalyst import Evaluation

# Create an experiment
evaluation = Evaluation(
    project_name="Test-RAG-App-1",
    dataset_name="MyDataset",
)

# Get list of available metrics
evaluation.list_metrics()

# Add metrics to the experiment

schema_mapping={
    'Query': 'prompt',
    'response': 'response',
    'Context': 'context',
    'expectedResponse': 'expected_response'
}

# Add single metric
evaluation.add_metrics(
    metrics=[
      {"name": "Faithfulness", "config": {"model": "gpt-4o-mini", "provider": "openai", "threshold": {"gte": 0.232323}}, "column_name": "Faithfulness_v1", "schema_mapping": schema_mapping},
    
    ]
)

# Add multiple metrics
evaluation.add_metrics(
    metrics=[
        {"name": "Faithfulness", "config": {"model": "gpt-4o-mini", "provider": "openai", "threshold": {"gte": 0.323}}, "column_name": "Faithfulness_gte", "schema_mapping": schema_mapping},
        {"name": "Hallucination", "config": {"model": "gpt-4o-mini", "provider": "openai", "threshold": {"lte": 0.323}}, "column_name": "Hallucination_lte", "schema_mapping": schema_mapping},
        {"name": "Hallucination", "config": {"model": "gpt-4o-mini", "provider": "openai", "threshold": {"eq": 0.323}}, "column_name": "Hallucination_eq", "schema_mapping": schema_mapping},
    ]
)

# Get the status of the experiment
status = evaluation.get_status()
print("Experiment Status:", status)

# Get the results of the experiment
results = evaluation.get_results()
print("Experiment Results:", results)

Trace Management

Record and analyze traces of your RAG application:

from ragaai_catalyst import Tracer

# Start a trace recording
tracer = Tracer(
    project_name="Test-RAG-App-1",
    dataset_name="tracer_dataset_name",
    metadata={"key1": "value1", "key2": "value2"},
    tracer_type="langchain",
    pipeline={
        "llm_model": "gpt-4o-mini",
        "vector_store": "faiss",
        "embed_model": "text-embedding-ada-002",
    }
).start()

# Your code here


# Stop the trace recording
tracer.stop()

# Get upload status
tracer.get_upload_status()

Prompt Management

Manage and use prompts efficiently in your projects:

from ragaai_catalyst import PromptManager

# Initialize PromptManager
prompt_manager = PromptManager(project_name="Test-RAG-App-1")

# List available prompts
prompts = prompt_manager.list_prompts()
print("Available prompts:", prompts)

# Get default prompt by prompt_name
prompt_name = "your_prompt_name"
prompt = prompt_manager.get_prompt(prompt_name)

# Get specific version of prompt by prompt_name and version
prompt_name = "your_prompt_name"
version = "v1"
prompt = prompt_manager.get_prompt(prompt_name,version)

# Get variables in a prompt
variable = prompt.get_variables()
print("variable:",variable)

# Get prompt content
prompt_content = prompt.get_prompt_content()
print("prompt_content:", prompt_content)

# Compile the prompt with variables
compiled_prompt = prompt.compile(query="What's the weather?", context="sunny", llm_response="It's sunny today")
print("Compiled prompt:", compiled_prompt)

# implement compiled_prompt with openai
import openai
def get_openai_response(prompt):
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=prompt
    )
    return response.choices[0].message.content
openai_response = get_openai_response(compiled_prompt)
print("openai_response:", openai_response)

# implement compiled_prompt with litellm
import litellm
def get_litellm_response(prompt):
    response = litellm.completion(
        model="gpt-4o-mini",
        messages=prompt
    )
    return response.choices[0].message.content
litellm_response = get_litellm_response(compiled_prompt)
print("litellm_response:", litellm_response)

For more detailed information on Prompt Management, please refer to the Prompt Management documentation.

Synthetic Data Generation

from ragaai_catalyst import SyntheticDataGeneration

# Initialize Synthetic Data Generation
sdg = SyntheticDataGeneration()

# Process your file
text = sdg.process_document(input_data="file_path")

# Generate results
result = sdg.generate_qna(text, question_type ='complex',model_config={"provider":"openai","model":"openai/gpt-3.5-turbo"},n=5)

print(result.head())

# Get supported Q&A types
sdg.get_supported_qna()

# Get supported providers
sdg.get_supported_providers()

Guardrail Management

from ragaai_catalyst import GuardrailsManager

# Initialize Guardrails Manager
gdm = GuardrailsManager(project_name=project_name)

# Get list of Guardrails available
guardrails_list = gdm.list_guardrails()
print('guardrails_list:', guardrails_list)

# Get list of fail condition for guardrails
fail_conditions = gdm.list_fail_condition()
print('fail_conditions;', fail_conditions)

#Get list of deployment ids
deployment_list = gdm.list_deployment_ids()
print('deployment_list:', deployment_list)

# Get specific deployment id with guardrails information
deployment_id_detail = gdm.get_deployment(17)
print('deployment_id_detail:', deployment_id_detail)

# Add guardrails to a deployment id
guardrails_config = {"guardrailFailConditions": ["FAIL"],
                     "deploymentFailCondition": "ALL_FAIL",
                     "alternateResponse": "Your alternate response"}

guardrails = [
    {
      "displayName": "Response_Evaluator",
      "name": "Response Evaluator",
      "config":{
          "mappings": [{
                        "schemaName": "Text",
                        "variableName": "Response"
                    }],
          "params": {
                    "isActive": {"value": False},
                    "isHighRisk": {"value": True},
                    "threshold": {"eq": 0},
                    "competitors": {"value": ["Google","Amazon"]}
                }
      }
    },
    {
      "displayName": "Regex_Check",
      "name": "Regex Check",
      "config":{
          "mappings": [{
                        "schemaName": "Text",
                        "variableName": "Response"
                    }],
          "params":{
              "isActive": {"value": False},
              "isHighRisk": {"value": True},
              "threshold": {"lt1": 1}
          }
      }
    }
]

gdm.add_guardrails(deployment_id, guardrails, guardrails_config)


# Import GuardExecutor
from ragaai_catalyst import GuardExecutor

# Initialise GuardExecutor with required params and Evaluate
executor = GuardExecutor(deployment_id,gdm,field_map={'context':'document'})


message={'role':'user',
         'content':'What is the capital of France'
        }
prompt_params={'document':' France'}

model_params = {'temperature':.7,'model':'gpt-4o-mini'}
llm_caller = 'litellm'

executor([message],prompt_params,model_params,llm_caller)

Agentic Tracing

The Agentic Tracing module provides comprehensive monitoring and analysis capabilities for AI agent systems. It helps track various aspects of agent behavior including:

  • LLM interactions and token usage
  • Tool utilization and execution patterns
  • Network activities and API calls
  • User interactions and feedback
  • Agent decision-making processes

The module includes utilities for cost tracking, performance monitoring, and debugging agent behavior. This helps in understanding and optimizing AI agent performance while maintaining transparency in agent operations.

from ragaai_catalyst import AgenticTracer

# Initialize tracer
tracer = AgenticTracer(
    project_name="project_name",
    dataset_name="dataset_name",
    tracer_type="agentic",
)

# Define tracers
@tracer.trace_agents("agent_name")
# Agent Definition

@tracer.trace_llm("llm_name")
# LLM Definition

@tracer.trace_tool("tool_name")
# Tool Definition

# Perform tracing
with tracer:
    # Agent execution code
    pass