-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_nerf.py
executable file
·266 lines (220 loc) · 14.2 KB
/
main_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.gui import NeRFGUI
from nerf.utils import *
from editing.editgrid import EditGrid
from functools import partial
from loss import huber_loss
# torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --preload")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=30000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024,
help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=512,
help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0,
help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16,
help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096,
help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
parser.add_argument('--patch_size', type=int, default=1,
help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--ff', action='store_true', help="use fully-fused MLP")
parser.add_argument('--tcnn', action='store_true', help="use TCNN backend")
### dataset options
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', action='store_true',
help="preload all data into GPU, accelerate training but use more GPU memory")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=2,
help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=0.33, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1 / 128,
help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.2, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--bg_radius', type=float, default=-1,
help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--no_bg', action='store_true',
help="for real world scenes such as LLFF, Mip360, results in different blending")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=1920, help="GUI width")
parser.add_argument('--H', type=int, default=1080, help="GUI height")
parser.add_argument('--radius', type=float, default=5, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=50, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=24, help="GUI rendering max sample per pixel")
### experimental
parser.add_argument('--error_map', action='store_true', help="use error map to sample rays")
parser.add_argument('--clip_text', type=str, default='', help="text input for CLIP guidance")
parser.add_argument('--rand_pose', type=int, default=-1,
help="<0 uses no rand pose, =0 only uses rand pose, >0 sample one rand pose every $ known poses")
### Editing and Stylization
parser.add_argument('--ablation_folder', type=str, default="test",
help="folder name where everything is saved to")
parser.add_argument('--tv_weight', type=float, default=0., help="weight for the tv loss")
parser.add_argument('--depth_disc_weight', type=float, default=0.,
help="weight for the depth disc loss")
parser.add_argument('--smooth_trans_weight', type=float, default=0.,
help="weight for the smooth continuity loss")
parser.add_argument('--style_weight', type=float, default=0., help="weight for the style loss")
parser.add_argument('--style_layers', action='append', type=int,
help="layers to use for style transfer")
parser.add_argument('--tv_depth_guide', action='store_true',
help="whether to use depth discontinuities for guiding the TV loss")
parser.add_argument('--intensity_weight', type=float, default=0.,
help="weight for the intensity-based regularization")
parser.add_argument('--preserve_color', action='store_true',
help="whether to preserve the color of the NeRF model")
parser.add_argument('--train_steps_style', type=int, default=3000,
help="number of steps to train the style encoder")
parser.add_argument('--train_steps_distill', type=int, default=3000,
help="number of steps to distill the style transfer")
parser.add_argument('--style_image', type=str, default=None,
help="style transfer image (in the style_images directory)")
parser.add_argument('--offset_loss', type=float, default=0.,
help="loss weight for the offset")
parser.add_argument('--weight_loss_non_uniform', type=float, default=0.,
help="non-uniform weight loss (each pixel should be affected by few pixels only)")
parser.add_argument('--weight_loss_uniform', type=float, default=0.,
help="uniform weight loss (each palette should contribute equally)")
parser.add_argument('--palette_loss_valid', type=float, default=0.,
help="valid palette loss (each palette shouldn't be out-of-gamut)")
parser.add_argument('--palette_loss_distinct', type=float, default=0.,
help="distinct palette loss (each palette should be distinct)")
parser.add_argument('--ablation_dir', type=str, default="ablation_",
help="directory to save ablation_folder in")
parser.add_argument('--num_palette_bases', type=int, default=4, help="number of palette bases")
parser.add_argument('--distill_palette_steps', type=int, default=1500,
help="modify num palette bases x iterations before termination")
parser.add_argument('--run_all', action='store_true',
help="Run everything (StyleEnc train, distill)")
parser.add_argument('--warmup_iterations', type=int, default=1000, help="number of warmup steps")
parser.add_argument('--crop_size', type=int, default=256, help='size of the random crop for stylization')
parser.add_argument('--style_enc_path', type=str, help='load a style encoder for automatic recoloring/stylization')
parser.add_argument('--palette_path', type=str, help='load a color palette for automatic recoloring/stylization')
parser.add_argument('--depth_diff', type=float, default=0.5)
parser.add_argument('--use_error_maps', action='store_true')
parser.add_argument('--load_edit_dataset', type=str, default=None)
parser.add_argument('--filter_close_point', action='store_true')
### NPR-based rendering
parser.add_argument('--ref_npr_config', type=str, default=None,
help='path for config file for ref-based stylization')
parser.add_argument('--reg_max_dist', type=float, default=2e-2,
help="maximal distance for registration")
parser.add_argument('--tv_min_dist', type=float, default=10e-2,
help="maximum distance for full tv_loss")
parser.add_argument('--min_tv_factor', type=float, default=0.1, help="minimum factor for tv")
parser.add_argument('--cos_loss_factor', type=float, default=2.5, help="cos loss factor")
parser.add_argument('--mse_loss', type=float, default=6., help="ray reg loss")
parser.add_argument('--color_patch_loss', type=float, default=3e1, help="color supervision loss")
parser.add_argument('--style_weight_d', type=float, default=5e-1, help="color supervision loss")
parser.add_argument('--depth_weight_d', type=float, default=1e-3, help="color supervision loss")
parser.add_argument('--feature_size', type=int, default=256, help="color supervision loss")
opt = parser.parse_args()
# default args for the list parameter wont work...
if opt.style_layers is None:
opt.style_layers = [10, 12, 14]
if opt.gui:
if not os.path.exists(opt.ablation_dir):
os.mkdir(opt.ablation_dir)
if not os.path.exists(os.path.join(opt.ablation_dir, opt.ablation_folder)):
os.mkdir(os.path.join(opt.ablation_dir, opt.ablation_folder))
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.preload = True
if opt.patch_size > 1:
opt.error_map = False # do not use error_map if use patch-based training
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
if opt.ff:
opt.fp16 = True
assert opt.bg_radius <= 0, "background model is not implemented for --ff"
from nerf.network_ff import NeRFNetwork
elif opt.tcnn:
opt.fp16 = True
assert opt.bg_radius <= 0, "background model is not implemented for --tcnn"
from nerf.network_tcnn import NeRFNetwork
else:
from nerf.network import NeRFNetwork
print(opt)
seed_everything(opt.seed)
model = NeRFNetwork(
encoding="hashgrid",
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
)
print(model)
criterion = torch.nn.MSELoss(reduction='none')
# criterion = partial(huber_loss, reduction='none')
# criterion = torch.nn.HuberLoss(reduction='none', beta=0.1) # only available after torch 1.10 ?
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if opt.test:
metrics = [PSNRMeter(), LPIPSMeter(device=device)]
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16,
metrics=metrics, use_checkpoint=opt.ckpt)
if opt.gui:
gui = NeRFGUI(opt, trainer)
gui.render()
else:
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
if test_loader.has_gt:
trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader, write_video=True) # test and save video
trainer.save_mesh(resolution=256, threshold=10)
else:
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
train_loader = NeRFDataset(opt, device=device, type='train').dataloader()
test_loader = NeRFDataset(opt, device=device, type='val').dataloader()
t_loader = NeRFDataset(opt, device=device, type='test').dataloader()
try:
vid_loader = NeRFDataset(opt, device=device, type='video').dataloader()
except FileNotFoundError:
vid_loader = None
# FIX: use the NeRF test dataset for rendering a video
if t_loader is not None:
vid_loader = t_loader
except AttributeError:
vid_loader = None
# decay to 0.1 * init_lr at last iter step
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer,
lambda iter: 0.1 ** min(iter / opt.iters, 1))
metrics = [PSNRMeter(), LPIPSMeter(device=device)]
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer,
criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler,
scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=50)
if opt.gui:
gui = NeRFGUI(opt, trainer, train_loader, val_loader=test_loader, video_loader=vid_loader,
test_loader=t_loader)
gui.render()
else:
valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)
# also test
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
if test_loader.has_gt:
trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader, write_video=False) # test and save video
# trainer.save_mesh(resolution=256, threshold=10)