-
Notifications
You must be signed in to change notification settings - Fork 4
/
ram1.5.f
875 lines (874 loc) · 21.3 KB
/
ram1.5.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
program ram
c
c ******************************************************************
c ***** Range-dependent Acoustic Model, Version 1.5, 13-Sep-00 *****
c ******************************************************************
c
c This code was developed by Michael D. Collins at the Naval
c Research Laboratory in Washington, DC. It solves range-dependent
c ocean acoustics problems with the split-step Pade algorithm
c [M. D. Collins, J. Acoust. Soc. Am. 93, 1736-1742 (1993)]. A
c user's guide and updates of the code are available via anonymous
c ftp from ram.nrl.navy.mil.
c
c Version 1.5 contains a correction to a bug in the dimension of
c quantities passed to subroutines fndrt and guerre that Laurie
c Fialkowski noticed.
c
c Version 1.4 contains a correction to a minor bug in subroutine
c guerre that Dave King noticed (amp1 and amp2 were declared
c twice) and a few other minor improvements.
c
c Version 1.3 contains a new root-finding subroutine.
c
c Version 1.2 contains a minor modification. The output to tl.grid
c is no longer zeroed out along the ocean bottom. This was done in
c previous versions so that the ocean bottom would be highlighted
c in graphical displays. The graphics codes ramclr, ramctr, and
c ramcc read in the bathymetry from ram.in and plot the ocean
c bottom directly.
c
c Version 1.1 contains two improvements:
c
c (1) An improved self starter. Stability is improved by using the
c factor (1-X)**2 instead of (1+X)**2 to smooth the delta function.
c The factor (1+X)**2 is nearly singular for some problems involving
c deep water and/or weak attenuation. Numerical problems associated
c with this singularity were detected by Eddie Scheer of Woods Hole
c Oceanographic Institute.
c
c (2) Elimination of underflow problems. A very small number is
c added to the solution in subroutine solve to prevent underflow,
c which can adversely affect run time on some computers. This
c improvement was suggested by Ed McDonald of the SACLANT Undersea
c Research Centre.
c
complex ci,ksq,ksqb,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2
real k0,ksqw
INTEGER argc,dirLen,inLen,outLen,resLen
CHARACTER input*1024,output*1024,directory*1024,resultat*1024
c
c mr=bathymetry points, mz=depth grid, mp=pade terms.
c
parameter (mr=505,mz=8000,mp=10)
dimension rb(mr),zb(mr),cw(mz),cb(mz),rhob(mz),attn(mz),alpw(mz),
> alpb(mz),f1(mz),f2(mz),f3(mz),ksq(mz),ksqw(mz),ksqb(mz),u(mz),
> v(mz),tlg(mz),r1(mz,mp),r2(mz,mp),r3(mz,mp),s1(mz,mp),
> s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)
c
argc = IARGC()
IF (argc .GE. 1) THEN
CALL GETARG(1,directory)
dirLen=len(directory)
DO while(directory(dirLen:dirLen) .eq. ' ')
dirLen=dirLen-1
ENDDO
IF (directory(dirLen:dirLen) .EQ. '\\') THEN
dirLen=dirLen+1
ENDIF
ENDIF
IF (argc .GE. 2) THEN
CALL GETARG(2,input)
inLen=len(input)
DO while(input(inLen:inLen) .eq. ' ')
inLen=inLen-1
ENDDO
IF (input(inLen:inLen) .EQ. '\\') THEN
inLen=inLen+1
ENDIF
input=directory(1:dirLen) // input(1:inLen)
inLen=inLen+dirLen
ELSE
inLen=len('ram.in') + dirLen
input=directory(1:dirLen) // 'ram.in'
ENDIF
IF (argc .GE. 3) THEN
CALL GETARG(3,output)
outLen=len(output)
DO while(output(outLen:outLen) .eq. ' ')
outLen=outLen-1
ENDDO
IF (output(outLen:outLen) .EQ. '\\') THEN
outLen=outLen+1
ENDIF
output=directory(1:dirLen) // output(1:outLen)
outLen=outLen+dirLen
ELSE
outLen=len('tl.grid') + dirLen
output=directory(1:dirLen) // 'tl.grid'
ENDIF
IF (argc .GE. 4) THEN
CALL GETARG(4,resultat)
resLen=len(resultat)
DO while(resultat(resLen:resLen) .eq. ' ')
resLen=resLen-1
ENDDO
IF (resultat(resLen:resLen) .EQ. '\\') THEN
resLen=resLen+1
ENDIF
resultat=directory(1:dirLen) // resultat(1:resLen)
resLen=resLen+dirLen
ELSE
resLen=len('tl.line') + dirLen
resultat=directory(1:dirLen) // 'tl.line'
ENDIF
open(unit=1,status='old',file=input(1:inLen))
open(unit=2,status='unknown',file=resultat(1:resLen))
open(unit=3,status='unknown',file=output(1:outLen),
& form='unformatted')
c
call setup(mr,mz,nz,mp,np,ns,mdr,ndr,ndz,iz,nzplt,lz,ib,ir,dir,dr,
> dz,pi,eta,eps,omega,rmax,c0,k0,ci,r,rp,rs,rb,zb,cw,cb,rhob,
> attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,
> pd1,pd2,tlg)
c
c March the acoustic field out in range.
c
1 call updat(mr,mz,nz,mp,np,iz,ib,dr,dz,eta,omega,rmax,c0,k0,ci,r,
> rp,rs,rb,zb,cw,cb,rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,
> r1,r2,r3,s1,s2,s3,pd1,pd2)
call solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)
r=r+dr
call outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)
if(r.lt.rmax)go to 1
c
close(1)
close(2)
close(3)
c
stop
end
c
c Initialize the parameters, acoustic field, and matrices.
c
subroutine setup(mr,mz,nz,mp,np,ns,mdr,ndr,ndz,iz,nzplt,lz,ib,ir,
> dir,dr,dz,pi,eta,eps,omega,rmax,c0,k0,ci,r,rp,rs,rb,zb,cw,cb,
> rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,
> s3,pd1,pd2,tlg)
complex ci,u(mz),v(mz),ksq(mz),ksqb(mz),r1(mz,mp),r2(mz,mp),
> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)
real k0,rb(mr),zb(mr),cw(mz),cb(mz),rhob(mz),attn(mz),alpw(mz),
> alpb(mz),f1(mz),f2(mz),f3(mz),ksqw(mz),tlg(mz)
c
read(1,*)
read(1,*)freq,zs,zr
read(1,*)rmax,dr,ndr
read(1,*)zmax,dz,ndz,zmplt
read(1,*)c0,np,ns,rs
c
i=1
1 read(1,*)rb(i),zb(i)
if(rb(i).lt.0.0)go to 2
i=i+1
go to 1
2 rb(i)=2.0*rmax
zb(i)=zb(i-1)
c
pi=4.0*atan(1.0)
ci=cmplx(0.0,1.0)
eta=1.0/(40.0*pi*alog10(exp(1.0)))
eps=1.0e-20
ib=1
mdr=0
r=dr
omega=2.0*pi*freq
ri=1.0+zr/dz
ir=ifix(ri)
dir=ri-float(ir)
k0=omega/c0
nz=zmax/dz-0.5
nzplt=zmplt/dz-0.5
z=zb(1)
iz=1.0+z/dz
iz=max(2,iz)
iz=min(nz,iz)
if(rs.lt.dr)rs=2.0*rmax
c
if(nz+2.gt.mz)then
write(*,*)' Need to increase parameter mz to ',nz+2
stop
end if
if(np.gt.mp)then
write(*,*)' Need to increase parameter mp to ',np
stop
end if
if(i.gt.mr)then
write(*,*)' Need to increase parameter mr to ',i
stop
end if
c
do 3 j=1,mp
r3(1,j)=0.0
r1(nz+2,j)=0.0
3 continue
do 4 i=1,nz+2
u(i)=0.0
v(i)=0.0
4 continue
lz=0
do 5 i=ndz,nzplt,ndz
lz=lz+1
5 continue
write(3)lz
c
c The initial profiles and starting field.
c
call profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,attn,
> alpw,alpb,ksqw,ksqb)
call selfs(mz,nz,mp,np,ns,iz,zs,dr,dz,pi,c0,k0,rhob,alpw,alpb,ksq,
> ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2)
call outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)
c
c The propagation matrices.
c
call epade(mp,np,ns,1,k0,c0,dr,pd1,pd2)
call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
c
return
end
c
c Set up the profiles.
c
subroutine profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,
> attn,alpw,alpb,ksqw,ksqb)
complex ci,ksqb(mz)
real k0,cw(mz),cb(mz),rhob(mz),attn(mz),alpw(mz),alpb(mz),ksqw(mz)
c
call zread(mz,nz,dz,cw)
call zread(mz,nz,dz,cb)
call zread(mz,nz,dz,rhob)
call zread(mz,nz,dz,attn)
rp=2.0*rmax
read(1,*,end=1)rp
c
1 do 2 i=1,nz+2
ksqw(i)=(omega/cw(i))**2-k0**2
ksqb(i)=((omega/cb(i))*(1.0+ci*eta*attn(i)))**2-k0**2
alpw(i)=sqrt(cw(i)/c0)
alpb(i)=sqrt(rhob(i)*cb(i)/c0)
2 continue
c
return
end
c
c Profile reader and interpolator.
c
subroutine zread(mz,nz,dz,prof)
real prof(mz)
c
do 1 i=1,nz+2
prof(i)=-1.0
1 continue
read(1,*)zi,profi
prof(1)=profi
i=1.5+zi/dz
prof(i)=profi
iold=i
2 read(1,*)zi,profi
if(zi.lt.0.0)go to 3
i=1.5+zi/dz
if(i.eq.iold)i=i+1
prof(i)=profi
iold=i
go to 2
3 prof(nz+2)=prof(i)
i=1
j=1
4 i=i+1
if(prof(i).lt.0.0)go to 4
if(i-j.eq.1)go to 6
do 5 k=j+1,i-1
prof(k)=prof(j)+float(k-j)*(prof(i)-prof(j))/float(i-j)
5 continue
6 j=i
if(j.lt.nz+2)go to 4
c
return
end
c
c The tridiagonal matrices.
c
subroutine matrc(mz,nz,mp,np,iz,jz,dz,k0,rhob,alpw,alpb,ksq,ksqw,
> ksqb,f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
complex d1,d2,d3,rfact,ksq(mz),ksqb(mz),r1(mz,mp),r2(mz,mp),
> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)
real k0,rhob(mz),f1(mz),f2(mz),f3(mz),alpw(mz),alpb(mz),ksqw(mz)
c
a1=k0**2/6.0
a2=2.0*k0**2/3.0
a3=k0**2/6.0
cfact=0.5/dz**2
dfact=1.0/12.0
c
c New matrices when iz.eq.jz.
c
if(iz.eq.jz)then
i1=2
i2=nz+1
do 1 i=1,iz
f1(i)=1.0/alpw(i)
f2(i)=1.0
f3(i)=alpw(i)
ksq(i)=ksqw(i)
1 continue
do 2 i=iz+1,nz+2
f1(i)=rhob(i)/alpb(i)
f2(i)=1.0/rhob(i)
f3(i)=alpb(i)
ksq(i)=ksqb(i)
2 continue
end if
c
c Updated matrices when iz.ne.jz.
c
if(iz.gt.jz)then
i1=jz
i2=iz+1
do 3 i=jz+1,iz
f1(i)=1.0/alpw(i)
f2(i)=1.0
f3(i)=alpw(i)
ksq(i)=ksqw(i)
3 continue
end if
c
if(iz.lt.jz)then
i1=iz
i2=jz+1
do 4 i=iz+1,jz
f1(i)=rhob(i)/alpb(i)
f2(i)=1.0/rhob(i)
f3(i)=alpb(i)
ksq(i)=ksqb(i)
4 continue
end if
c
do 6 i=i1,i2
c
c Discretization by Galerkin's method.
c
c1=cfact*f1(i)*(f2(i-1)+f2(i))*f3(i-1)
c2=-cfact*f1(i)*(f2(i-1)+2.0*f2(i)+f2(i+1))*f3(i)
c3=cfact*f1(i)*(f2(i)+f2(i+1))*f3(i+1)
d1=c1+dfact*(ksq(i-1)+ksq(i))
d2=c2+dfact*(ksq(i-1)+6.0*ksq(i)+ksq(i+1))
d3=c3+dfact*(ksq(i)+ksq(i+1))
c
do 5 j=1,np
r1(i,j)=a1+pd2(j)*d1
r2(i,j)=a2+pd2(j)*d2
r3(i,j)=a3+pd2(j)*d3
s1(i,j)=a1+pd1(j)*d1
s2(i,j)=a2+pd1(j)*d2
s3(i,j)=a3+pd1(j)*d3
5 continue
6 continue
c
c The matrix decomposition.
c
do 9 j=1,np
do 7 i=i1,iz
rfact=1.0/(r2(i,j)-r1(i,j)*r3(i-1,j))
r1(i,j)=r1(i,j)*rfact
r3(i,j)=r3(i,j)*rfact
s1(i,j)=s1(i,j)*rfact
s2(i,j)=s2(i,j)*rfact
s3(i,j)=s3(i,j)*rfact
7 continue
c
do 8 i=i2,iz+2,-1
rfact=1.0/(r2(i,j)-r3(i,j)*r1(i+1,j))
r1(i,j)=r1(i,j)*rfact
r3(i,j)=r3(i,j)*rfact
s1(i,j)=s1(i,j)*rfact
s2(i,j)=s2(i,j)*rfact
s3(i,j)=s3(i,j)*rfact
8 continue
c
r2(iz+1,j)=r2(iz+1,j)-r1(iz+1,j)*r3(iz,j)
r2(iz+1,j)=r2(iz+1,j)-r3(iz+1,j)*r1(iz+2,j)
r2(iz+1,j)=1.0/r2(iz+1,j)
c
9 continue
c
return
end
c
c The tridiagonal solver.
c
subroutine solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)
complex u(mz),v(mz),r1(mz,mp),r2(mz,mp),r3(mz,mp),s1(mz,mp),
> s2(mz,mp),s3(mz,mp)
eps=1.0e-30
c
do 6 j=1,np
c
c The right side.
c
do 1 i=2,nz+1
v(i)=s1(i,j)*u(i-1)+s2(i,j)*u(i)+s3(i,j)*u(i+1)+eps
1 continue
c
c The elimination steps.
c
do 2 i=3,iz
v(i)=v(i)-r1(i,j)*v(i-1)+eps
2 continue
do 3 i=nz,iz+2,-1
v(i)=v(i)-r3(i,j)*v(i+1)+eps
3 continue
c
u(iz+1)=(v(iz+1)-r1(iz+1,j)*v(iz)-r3(iz+1,j)*v(iz+2))*
> r2(iz+1,j)+eps
c
c The back substitution steps.
c
do 4 i=iz,2,-1
u(i)=v(i)-r3(i,j)*u(i+1)+eps
4 continue
do 5 i=iz+2,nz+1
u(i)=v(i)-r1(i,j)*u(i-1)+eps
5 continue
6 continue
c
return
end
c
c Matrix updates.
c
subroutine updat(mr,mz,nz,mp,np,iz,ib,dr,dz,eta,omega,rmax,c0,k0,
> ci,r,rp,rs,rb,zb,cw,cb,rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,
> f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
complex ci,ksq(mz),ksqb(mz),r1(mz,mp),r2(mz,mp),r3(mz,mp),
> s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)
real k0,rb(mr),zb(mr),attn(mz),cb(mz),rhob(mz),cw(mz),ksqw(mz),
> f1(mz),f2(mz),f3(mz),alpw(mz),alpb(mz)
c
c Varying bathymetry.
c
if(r.ge.rb(ib+1))ib=ib+1
jz=iz
z=zb(ib)+(r+0.5*dr-rb(ib))*(zb(ib+1)-zb(ib))/(rb(ib+1)-rb(ib))
iz=1.0+z/dz
iz=max(2,iz)
iz=min(nz,iz)
if(iz.ne.jz)call matrc(mz,nz,mp,np,iz,jz,dz,k0,rhob,alpw,alpb,ksq,
> ksqw,ksqb,f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
c
c Varying profiles.
c
if(r.ge.rp)then
call profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,attn,
> alpw,alpb,ksqw,ksqb)
call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
end if
c
c Turn off the stability constraints.
c
if(r.ge.rs)then
ns=0
rs=2.0*rmax
call epade(mp,np,ns,1,k0,c0,dr,pd1,pd2)
call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
end if
c
return
end
c
c The self-starter.
c
subroutine selfs(mz,nz,mp,np,ns,iz,zs,dr,dz,pi,c0,k0,rhob,alpw,
> alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2)
complex u(mz),v(mz),ksq(mz),ksqb(mz),r1(mz,mp),r2(mz,mp),
> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)
real k0,rhob(mz),alpw(mz),alpb(mz),f1(mz),f2(mz),f3(mz),ksqw(mz)
c
c Conditions for the delta function.
c
si=1.0+zs/dz
is=ifix(si)
dis=si-float(is)
u(is)=(1.0-dis)*sqrt(2.0*pi/k0)/(dz*alpw(is))
u(is+1)=dis*sqrt(2.0*pi/k0)/(dz*alpw(is))
c
c Divide the delta function by (1-X)**2 to get a smooth rhs.
c
pd1(1)=0.0
pd2(1)=-1.0
call matrc(mz,nz,mp,1,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
call solve(mz,nz,mp,1,iz,u,v,r1,r2,r3,s1,s2,s3)
call solve(mz,nz,mp,1,iz,u,v,r1,r2,r3,s1,s2,s3)
c
c Apply the operator (1-X)**2*(1+X)**(-1/4)*exp(ci*k0*r*sqrt(1+X)).
c
call epade(mp,np,ns,2,k0,c0,dr,pd1,pd2)
call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2)
call solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)
c
return
end
c
c Output transmission loss.
c
subroutine outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)
complex ur,u(mz)
real f3(mz),tlg(mz)
c
ur=(1.0-dir)*f3(ir)*u(ir)+dir*f3(ir+1)*u(ir+1)
tl=-20.0*alog10(cabs(ur)+eps)+10.0*alog10(r+eps)
write(2,*)r,tl
c
mdr=mdr+1
if(mdr.eq.ndr)then
mdr=0
c
j=0
do 1 i=ndz,nzplt,ndz
ur=u(i)*f3(i)
j=j+1
tlg(j)=-20.0*alog10(cabs(ur)+eps)+10.0*alog10(r+eps)
1 continue
write(3)(tlg(j),j=1,lz)
end if
c
return
end
c
c The coefficients of the rational approximation.
c
subroutine epade(mp,np,ns,ip,k0,c0,dr,pd1,pd2)
c
implicit real*8 (a-h,o-z)
complex*16 ci,z1,z2,g,dg,dh1,dh2,dh3,a,b
complex*8 pd1(mp),pd2(mp)
real*8 nu
real*4 k0,c0,dr
parameter (m=40)
dimension bin(m,m),a(m,m),b(m),dg(m),dh1(m),dh2(m),dh3(m),fact(m)
pi=4.0d0*datan(1.0d0)
ci=dcmplx(0.0d0,1.0d0)
sig=k0*dr
n=2*np
c
if(ip.eq.1)then
nu=0.0d0
alp=0.0d0
else
nu=1.0d0
alp=-0.25d0
end if
c
c The factorials.
c
fact(1)=1.0d0
do 1 i=2,n
fact(i)=dfloat(i)*fact(i-1)
1 continue
c
c The binomial coefficients.
c
do 2 i=1,n+1
bin(i,1)=1.0d0
bin(i,i)=1.0d0
2 continue
do 4 i=3,n+1
do 3 j=2,i-1
bin(i,j)=bin(i-1,j-1)+bin(i-1,j)
3 continue
4 continue
c
do 6 i=1,n
do 5 j=1,n
a(i,j)=0.0d0
5 continue
6 continue
c
c The accuracy constraints.
c
call deriv(m,n,sig,alp,dg,dh1,dh2,dh3,bin,nu)
c
do 7 i=1,n
b(i)=dg(i+1)
7 continue
do 9 i=1,n
if(2*i-1.le.n)a(i,2*i-1)=fact(i)
do 8 j=1,i
if(2*j.le.n)a(i,2*j)=-bin(i+1,j+1)*fact(j)*dg(i-j+1)
8 continue
9 continue
c
c The stability constraints.
c
if(ns.ge.1)then
z1=-3.0d0
b(n)=-1.0d0
do 10 j=1,np
a(n,2*j-1)=z1**j
a(n,2*j)=0.0d0
10 continue
end if
c
if(ns.ge.2)then
z1=-1.5d0
b(n-1)=-1.0d0
do 11 j=1,np
a(n-1,2*j-1)=z1**j
a(n-1,2*j)=0.0d0
11 continue
end if
c
call gauss(m,n,a,b)
c
dh1(1)=1.0d0
do 12 j=1,np
dh1(j+1)=b(2*j-1)
12 continue
call fndrt(dh1,np,dh2,m)
do 13 j=1,np
pd1(j)=-1.0d0/dh2(j)
13 continue
c
dh1(1)=1.0d0
do 14 j=1,np
dh1(j+1)=b(2*j)
14 continue
call fndrt(dh1,np,dh2,m)
do 15 j=1,np
pd2(j)=-1.0d0/dh2(j)
15 continue
c
return
end
c
c The operator function.
c
function g(ci,sig,x,alp,nu)
complex*16 ci,g
real*8 alp,sig,x,nu
g=(1.0d0-nu*x)**2*cdexp(alp*dlog(1.0d0+x)+
> ci*sig*(-1.0d0+dsqrt(1.0d0+x)))
return
end
c
c The derivatives of the operator function at x=0.
c
subroutine deriv(m,n,sig,alp,dg,dh1,dh2,dh3,bin,nu)
implicit real*8 (a-h,o-z)
complex*16 ci,dg(m),dh1(m),dh2(m),dh3(m)
real*8 bin(m,m),nu
ci=dcmplx(0.0d0,1.0d0)
c
dh1(1)=0.5d0*ci*sig
exp1=-0.5d0
dh2(1)=alp
exp2=-1.0d0
dh3(1)=-2.0d0*nu
exp3=-1.0d0
do 1 i=2,n
dh1(i)=dh1(i-1)*exp1
exp1=exp1-1.0d0
dh2(i)=dh2(i-1)*exp2
exp2=exp2-1.0d0
dh3(i)=-nu*dh3(i-1)*exp3
exp3=exp3-1.0d0
1 continue
c
dg(1)=1.0d0
dg(2)=dh1(1)+dh2(1)+dh3(1)
do 3 i=2,n
dg(i+1)=dh1(i)+dh2(i)+dh3(i)
do 2 j=1,i-1
dg(i+1)=dg(i+1)+bin(i,j)*(dh1(j)+dh2(j)+dh3(j))*dg(i-j+1)
2 continue
3 continue
c
return
end
c
c Gaussian elimination.
c
subroutine gauss(m,n,a,b)
implicit real*8 (a-h,o-z)
complex*16 a(m,m),b(m)
c
c Downward elimination.
c
do 4 i=1,n
if(i.lt.n)call pivot(m,n,i,a,b)
a(i,i)=1.0d0/a(i,i)
b(i)=b(i)*a(i,i)
if(i.lt.n)then
do 1 j=i+1,n
a(i,j)=a(i,j)*a(i,i)
1 continue
do 3 k=i+1,n
b(k)=b(k)-a(k,i)*b(i)
do 2 j=i+1,n
a(k,j)=a(k,j)-a(k,i)*a(i,j)
2 continue
3 continue
end if
4 continue
c
c Back substitution.
c
do 6 i=n-1,1,-1
do 5 j=i+1,n
b(i)=b(i)-a(i,j)*b(j)
5 continue
6 continue
c
return
end
c
c Rows are interchanged for stability.
c
subroutine pivot(m,n,i,a,b)
implicit real*8 (a-h,o-z)
complex*16 temp,a(m,m),b(m)
c
i0=i
amp0=cdabs(a(i,i))
do 1 j=i+1,n
amp=cdabs(a(j,i))
if(amp.gt.amp0)then
i0=j
amp0=amp
end if
1 continue
if(i0.eq.i)return
c
temp=b(i)
b(i)=b(i0)
b(i0)=temp
do 2 j=i,n
temp=a(i,j)
a(i,j)=a(i0,j)
a(i0,j)=temp
2 continue
c
return
end
c
c The root-finding subroutine.
c
subroutine fndrt(a,n,z,m)
complex*16 a(m),z(m),root
real*8 err
c
if(n.eq.1)then
z(1)=-a(1)/a(2)
return
end if
if(n.eq.2)go to 4
c
do 3 k=n,3,-1
c
c Obtain an approximate root.
c
root=0.0d0
err=1.0d-12
call guerre(a,k,m,root,err,1000)
c
c Refine the root by iterating five more times.
c
err=0.0d0
call guerre(a,k,m,root,err,5)
z(k)=root
c
c Divide out the factor (z-root).
c
do 1 i=k,1,-1
a(i)=a(i)+root*a(i+1)
1 continue
do 2 i=1,k
a(i)=a(i+1)
2 continue
c
3 continue
c
c Solve the quadratic equation.
c
4 z(2)=0.5*(-a(2)+sqrt(a(2)**2-4.0*a(1)*a(3)))/a(3)
z(1)=0.5*(-a(2)-sqrt(a(2)**2-4.0*a(1)*a(3)))/a(3)
c
return
end
c
c This subroutine finds a root of a polynomial of degree n > 2
c by Laguerre's method.
c
subroutine guerre(a,n,m,z,err,nter)
complex*16 a(m),az(50),azz(50),z,dz,p,pz,pzz,f,g,h,ci
real*8 amp1,amp2,rn,eps,err
ci=cmplx(0.0d0,1.0d0)
eps=1.0d-20
rn=real(n)
c
c The coefficients of p'(z) and p''(z).
c
do 1 i=1,n
az(i)=float(i)*a(i+1)
1 continue
do 2 i=1,n-1
azz(i)=float(i)*az(i+1)
2 continue
c
iter=0
3 p=a(n)+a(n+1)*z
do 4 i=n-1,1,-1
p=a(i)+z*p
4 continue
if(abs(p).lt.eps)return
c
pz=az(n-1)+az(n)*z
do 5 i=n-2,1,-1
pz=az(i)+z*pz
5 continue
c
pzz=azz(n-2)+azz(n-1)*z
do 6 i=n-3,1,-1
pzz=azz(i)+z*pzz
6 continue
c
c The Laguerre perturbation.
c
f=pz/p
g=f**2-pzz/p
h=sqrt((rn-1.0d0)*(rn*g-f**2))
amp1=abs(f+h)
amp2=abs(f-h)
if(amp1.gt.amp2)then
dz=-rn/(f+h)
else
dz=-rn/(f-h)
end if
c
iter=iter+1
c
c Rotate by 90 degrees to avoid limit cycles.
c
jter=jter+1
if(jter.eq.10)then
jter=1
dz=dz*ci
end if
z=z+dz
c
if(iter.eq.100)then
write(*,*)' '
write(*,*)' Laguerre method not converging.'
write(*,*)' Try a different combination of DR and NP.'
write(*,*)' '
stop
end if
c
if((abs(dz).gt.err).and.(iter.lt.nter))go to 3
c
return
end