-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_taylor_timestep.py
executable file
·125 lines (101 loc) · 4.73 KB
/
plot_taylor_timestep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
import os
# Note: uses genutil from UV-CDAT.
import numpy as np
import genutil
import matplotlib
import matplotlib.pyplot as plt
import utils
import core_parameter
from taylor_diagram import TaylorDiagram
# These functions taken from metrics in E3SM diags
def corr(model, obs, axis='xy'):
corr = -np.infty
try:
corr = float(genutil.statistics.correlation(
model, obs, axis=axis, weights='generate'))
except Exception as err:
print(err)
return corr
def std(variable, axis='xy'):
std = -np.infty
try:
std = float(genutil.statistics.std(
variable, axis=axis, weights='generate'))
except Exception as err:
print(err)
return std
parameter = core_parameter.CoreParameter()
parameter.test_data_path = '/p/lscratchh/santos36/timestep_monthly_avgs_lat_lon/'
parameter.reference_data_path = '/p/lscratchh/santos36/timestep_monthly_avgs_lat_lon/'
parameter.ref_name = 'timestep_ctrl'
parameter.results_dir = '/g/g14/santos36/Timesteps/'
parameter.seasons = ['ANN']
parameter.variables = ['PRECT', 'PRECL', 'PRECC', 'PSL', 'SWCF', 'LWCF',
'TGCLDLWP', 'TGCLDIWP', 'CLDTOT', 'U10', 'OMEGA500', 'TS']
ref_data = utils.dataset.Dataset(parameter, ref=True)
marker = ['o', 'd', '+', 's', '>', '<', 'v', '^', 'x', 'h', 'X', 'H']
color = ['k', 'r', 'g', 'y', 'm']
matplotlib.rcParams.update({'font.size': 20})
fig = plt.figure(figsize=(9,8))
refstd = 1.0
taylordiag = TaylorDiagram(refstd, fig=fig, rect=111, label="REF")
ax = taylordiag._ax
case_colors = {
'timestep_all_10s': 'k',
'timestep_ctrl_ne16': 'r',
'timestep_ctrl_y04-y07': 'g',
}
for season in parameter.seasons:
# Will not actually work for multiple seasons as written due to having only
# one figure.
print('Season: {}'.format(season))
for test_name in ('timestep_all_10s', 'timestep_ctrl_ne16', 'timestep_ctrl_y04-y07'):
parameter.test_name = test_name
test_data = utils.dataset.Dataset(parameter, test=True)
irow = 0
for var in parameter.variables:
print('Variable: {}'.format(var))
parameter.var_id = var
mv1 = test_data.get_climo_variable(var, season)
mv2 = ref_data.get_climo_variable(var, season)
parameter.viewer_descr[var] = mv1.long_name if hasattr(
mv1, 'long_name') else 'No long_name attr in test data.'
region = 'global'
if var == 'TS':
region = 'land'
land_frac = test_data.get_climo_variable('LANDFRAC', season)
ocean_frac = test_data.get_climo_variable('OCNFRAC', season)
mv1_domain = utils.general.select_region(region, mv1, land_frac, ocean_frac, parameter)
mv2_domain = utils.general.select_region(region, mv2, land_frac, ocean_frac, parameter)
metrics = dict()
metrics['ref_regrid'] = {
'std': float(std(mv2_domain))
}
metrics['test_regrid'] = {
'std': float(std(mv1_domain))
}
metrics['misc'] = {
'corr': float(corr(mv1_domain, mv2_domain))
}
std_norm, correlation = metrics['test_regrid']['std']/metrics['ref_regrid']['std'], metrics['misc']['corr']
taylordiag.add_sample(std_norm, correlation, marker=marker[irow], c=color[0], ms=10,
label=parameter.viewer_descr[var], markerfacecolor='None',
markeredgecolor=case_colors[test_name], linestyle='None')
irow += 1
if test_name == 'timestep_all_10s':
# Add a legend to the figure.
fig.legend(taylordiag.samplePoints,
["Reference", "Total Precipitation", "Large-scale Precipitation",
"Convective Precipitation",
"Sea Level Pressure", "Shortwave Cloud Forcing", "Longwave Cloud Forcing",
"Liquid Water Path", "Ice Water Path",
"Cloud Fraction",
"10m wind speed", "500 mb Vertical Velocity", "Land Surface Temperature"],
numpoints=1, loc='center right', bbox_to_anchor=(1.0, .75), prop={'size':10})
# model_text = 'Test Model: ' + parameter.test_name
# ax.text(0.6, 1, model_text, ha='left', va='center', transform=ax.transAxes, color=color[0], fontsize=12)
# ax.text(0.6, 0.95, 'Ref. Model: ' + parameter.ref_name, ha='left', va='center', transform=ax.transAxes, color='k', fontsize=12)
# plt.title(season + ': Spatial Variability', y=1.08)
# plt.title('Taylor Diagram - Spatial Variability', y=1.08)
fig.savefig(os.path.join(parameter.results_dir, season + '_metrics_taylor_diag_timesteps.png'))