forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
astar.py
148 lines (126 loc) · 4.08 KB
/
astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
The A* algorithm combines features of uniform-cost search and pure heuristic search to
efficiently compute optimal solutions.
The A* algorithm is a best-first search algorithm in which the cost associated with a
node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to
node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal.
The A* algorithm introduces a heuristic into a regular graph-searching algorithm,
essentially planning ahead at each step so a more optimal decision is made. For this
reason, A* is known as an algorithm with brains.
https://en.wikipedia.org/wiki/A*_search_algorithm
"""
import numpy as np
class Cell:
"""
Class cell represents a cell in the world which have the properties:
position: represented by tuple of x and y coordinates initially set to (0,0).
parent: Contains the parent cell object visited before we arrived at this cell.
g, h, f: Parameters used when calling our heuristic function.
"""
def __init__(self):
self.position = (0, 0)
self.parent = None
self.g = 0
self.h = 0
self.f = 0
"""
Overrides equals method because otherwise cell assign will give
wrong results.
"""
def __eq__(self, cell):
return self.position == cell.position
def showcell(self):
print(self.position)
class Gridworld:
"""
Gridworld class represents the external world here a grid M*M
matrix.
world_size: create a numpy array with the given world_size default is 5.
"""
def __init__(self, world_size=(5, 5)):
self.w = np.zeros(world_size)
self.world_x_limit = world_size[0]
self.world_y_limit = world_size[1]
def show(self):
print(self.w)
def get_neighbours(self, cell):
"""
Return the neighbours of cell
"""
neughbour_cord = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
current_x = cell.position[0]
current_y = cell.position[1]
neighbours = []
for n in neughbour_cord:
x = current_x + n[0]
y = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
c = Cell()
c.position = (x, y)
c.parent = cell
neighbours.append(c)
return neighbours
def astar(world, start, goal):
"""
Implementation of a start algorithm.
world : Object of the world object.
start : Object of the cell as start position.
stop : Object of the cell as goal position.
>>> p = Gridworld()
>>> start = Cell()
>>> start.position = (0,0)
>>> goal = Cell()
>>> goal.position = (4,4)
>>> astar(p, start, goal)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
"""
_open = []
_closed = []
_open.append(start)
while _open:
min_f = np.argmin([n.f for n in _open])
current = _open[min_f]
_closed.append(_open.pop(min_f))
if current == goal:
break
for n in world.get_neighbours(current):
for c in _closed:
if c == n:
continue
n.g = current.g + 1
x1, y1 = n.position
x2, y2 = goal.position
n.h = (y2 - y1) ** 2 + (x2 - x1) ** 2
n.f = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(n)
path = []
while current.parent is not None:
path.append(current.position)
current = current.parent
path.append(current.position)
return path[::-1]
if __name__ == "__main__":
world = Gridworld()
# Start position and goal
start = Cell()
start.position = (0, 0)
goal = Cell()
goal.position = (4, 4)
print(f"path from {start.position} to {goal.position}")
s = astar(world, start, goal)
# Just for visual reasons.
for i in s:
world.w[i] = 1
print(world.w)