-
Notifications
You must be signed in to change notification settings - Fork 258
/
Copy pathvalidation.py
225 lines (167 loc) · 9.21 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import pickle
import argparse
import time
import subprocess
import torch
from torch.autograd import Variable
import numpy as np
from utils import DataLoader
from helper import get_mean_error, get_final_error
from helper import *
from grid import getSequenceGridMask
def main():
parser = argparse.ArgumentParser()
# Model to be loaded
parser.add_argument('--epoch', type=int, default=15,
help='Epoch of model to be loaded')
parser.add_argument('--seq_length', type=int, default=20,
help='RNN sequence length')
parser.add_argument('--use_cuda', action="store_true", default=False,
help='Use GPU or not')
parser.add_argument('--drive', action="store_true", default=False,
help='Use Google drive or not')
# Size of neighborhood to be considered parameter
parser.add_argument('--neighborhood_size', type=int, default=32,
help='Neighborhood size to be considered for social grid')
# Size of the social grid parameter
parser.add_argument('--grid_size', type=int, default=4,
help='Grid size of the social grid')
# number of validation will be used
parser.add_argument('--num_validation', type=int, default=5,
help='Total number of validation dataset will be visualized')
# gru support
parser.add_argument('--gru', action="store_true", default=False,
help='True : GRU cell, False: LSTM cell')
# method selection
parser.add_argument('--method', type=int, default=1,
help='Method of lstm will be used (1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)')
# Parse the parameters
sample_args = parser.parse_args()
#for drive run
prefix = ''
f_prefix = '.'
if sample_args.drive is True:
prefix='drive/semester_project/social_lstm_final/'
f_prefix = 'drive/semester_project/social_lstm_final'
method_name = get_method_name(sample_args.method)
model_name = "LSTM"
save_tar_name = method_name+"_lstm_model_"
if sample_args.gru:
model_name = "GRU"
save_tar_name = method_name+"_gru_model_"
# Save directory
save_directory = os.path.join(f_prefix, 'model/', method_name, model_name)
#plot directory for plotting in the future
plot_directory = os.path.join(f_prefix, 'plot/', method_name, model_name)
plot_validation_file_directory = 'validation'
# Define the path for the config file for saved args
with open(os.path.join(save_directory,'config.pkl'), 'rb') as f:
saved_args = pickle.load(f)
origin = (0,0)
reference_point = (0,1)
net = get_model(sample_args.method, saved_args, True)
if sample_args.use_cuda:
net = net.cuda()
# Get the checkpoint path
checkpoint_path = os.path.join(save_directory, save_tar_name+str(sample_args.epoch)+'.tar')
if os.path.isfile(checkpoint_path):
print('Loading checkpoint')
checkpoint = torch.load(checkpoint_path)
model_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
print('Loaded checkpoint at epoch', model_epoch)
# Create the DataLoader object
dataloader = DataLoader(f_prefix, 1, sample_args.seq_length, num_of_validation = sample_args.num_validation, forcePreProcess = True, infer = True)
create_directories(plot_directory, [plot_validation_file_directory])
dataloader.reset_batch_pointer()
print('****************Validation dataset batch processing******************')
dataloader.reset_batch_pointer(valid=False)
dataset_pointer_ins = dataloader.dataset_pointer
loss_epoch = 0
err_epoch = 0
f_err_epoch = 0
num_of_batch = 0
smallest_err = 100000
#results of one epoch for all validation datasets
epoch_result = []
#results of one validation dataset
results = []
# For each batch
for batch in range(dataloader.num_batches):
start = time.time()
# Get batch data
x, y, d , numPedsList, PedsList ,target_ids = dataloader.next_batch()
if dataset_pointer_ins is not dataloader.dataset_pointer:
if dataloader.dataset_pointer is not 0:
print('Finished prosessed file : ', dataloader.get_file_name(-1),' Avarage error : ', err_epoch/num_of_batch)
num_of_batch = 0
epoch_result.append(results)
dataset_pointer_ins = dataloader.dataset_pointer
results = []
# Loss for this batch
loss_batch = 0
err_batch = 0
f_err_batch = 0
# For each sequence
for sequence in range(dataloader.batch_size):
# Get data corresponding to the current sequence
x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence]
target_id = target_ids[sequence]
folder_name = dataloader.get_directory_name_with_pointer(d_seq)
dataset_data = dataloader.get_dataset_dimension(folder_name)
#dense vector creation
x_seq, lookup_seq = dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)
#will be used for error calculation
orig_x_seq = x_seq.clone()
target_id_values = x_seq[0][lookup_seq[target_id], 0:2]
#grid mask calculation
if sample_args.method == 2: #obstacle lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, saved_args.neighborhood_size, saved_args.grid_size, saved_args.use_cuda, True)
elif sample_args.method == 1: #social lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, saved_args.neighborhood_size, saved_args.grid_size, saved_args.use_cuda)
#vectorize datapoints
x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
# <---------------- Experimental block (may need update in methods)----------------------->
# x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values)
# angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy()))
# x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq)
# # Compute grid masks
# grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, sample_args.neighborhood_size, sample_args.grid_size, sample_args.use_cuda)
# x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
if sample_args.use_cuda:
x_seq = x_seq.cuda()
if sample_args.method == 3: #vanilla lstm
ret_x_seq, loss = sample_validation_data_vanilla(x_seq, PedsList_seq, sample_args, net, lookup_seq, numPedsList_seq, dataloader)
else:
ret_x_seq, loss = sample_validation_data(x_seq, PedsList_seq, grid_seq, sample_args, net, lookup_seq, numPedsList_seq, dataloader)
#<---------------------Experimental inverse block -------------->
# ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, target_id_values, first_values_dict)
# ret_x_seq = rotate_traj_with_target_ped(ret_x_seq, -angle, PedsList_seq, lookup_seq)
# ret_x_seq = translate(ret_x_seq, PedsList_seq, lookup_seq ,-target_id_values)
#revert the points back to original space
ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict)
err = get_mean_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, sample_args.use_cuda, lookup_seq)
f_err = get_final_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, lookup_seq)
loss_batch += loss
err_batch += err
f_err_batch += f_err
results.append((orig_x_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy(), PedsList_seq, lookup_seq, dataloader.get_frame_sequence(sample_args.seq_length), target_id))
end = time.time()
print('Current file : ', dataloader.get_file_name(0),' Batch : ', batch+1, ' Sequence: ', sequence+1, ' Sequence mean error: ', err,' Sequence final error: ',f_err,' time: ', end - start)
loss_batch = loss_batch / dataloader.batch_size
err_batch = err_batch / dataloader.batch_size
f_err_batch = f_err_batch / dataloader.batch_size
num_of_batch += 1
loss_epoch += loss_batch.item()
err_epoch += err_batch
f_err_epoch += f_err_batch
epoch_result.append(results)
if dataloader.num_batches != 0:
loss_epoch = loss_epoch / dataloader.num_batches
err_epoch = err_epoch / dataloader.num_batches
f_err_epoch = f_err_epoch / dataloader.num_batches
print('valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}'.format(loss_epoch, err_epoch, f_err_epoch))
dataloader.write_to_plot_file(epoch_result, os.path.join(plot_directory, plot_validation_file_directory))
if __name__ == '__main__':
main()