-
Notifications
You must be signed in to change notification settings - Fork 258
/
Copy pathhelper.py
545 lines (413 loc) · 16.9 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import numpy as np
import torch
from torch.autograd import Variable
import os
import shutil
from os import walk
import math
from model import SocialModel
from olstm_model import OLSTMModel
from vlstm_model import VLSTMModel
#one time set dictionary for a exist key
class WriteOnceDict(dict):
def __setitem__(self, key, value):
if not key in self:
super(WriteOnceDict, self).__setitem__(key, value)
#(1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)
def get_method_name(index):
# return method name given index
return {
1 : 'SOCIALLSTM',
2 : 'OBSTACLELSTM',
3 : 'VANILLALSTM'
}.get(index, 'SOCIALLSTM')
def get_model(index, arguments, infer = False):
# return a model given index and arguments
if index == 1:
return SocialModel(arguments, infer)
elif index == 2:
return OLSTMModel(arguments, infer)
elif index == 3:
return VLSTMModel(arguments, infer)
else:
return SocialModel(arguments, infer)
def getCoef(outputs):
'''
Extracts the mean, standard deviation and correlation
params:
outputs : Output of the SRNN model
'''
mux, muy, sx, sy, corr = outputs[:, :, 0], outputs[:, :, 1], outputs[:, :, 2], outputs[:, :, 3], outputs[:, :, 4]
sx = torch.exp(sx)
sy = torch.exp(sy)
corr = torch.tanh(corr)
return mux, muy, sx, sy, corr
def sample_gaussian_2d(mux, muy, sx, sy, corr, nodesPresent, look_up):
'''
Parameters
==========
mux, muy, sx, sy, corr : a tensor of shape 1 x numNodes
Contains x-means, y-means, x-stds, y-stds and correlation
nodesPresent : a list of nodeIDs present in the frame
look_up : lookup table for determining which ped is in which array index
Returns
=======
next_x, next_y : a tensor of shape numNodes
Contains sampled values from the 2D gaussian
'''
o_mux, o_muy, o_sx, o_sy, o_corr = mux[0, :], muy[0, :], sx[0, :], sy[0, :], corr[0, :]
numNodes = mux.size()[1]
next_x = torch.zeros(numNodes)
next_y = torch.zeros(numNodes)
converted_node_present = [look_up[node] for node in nodesPresent]
for node in range(numNodes):
if node not in converted_node_present:
continue
mean = [o_mux[node], o_muy[node]]
cov = [[o_sx[node]*o_sx[node], o_corr[node]*o_sx[node]*o_sy[node]],
[o_corr[node]*o_sx[node]*o_sy[node], o_sy[node]*o_sy[node]]]
mean = np.array(mean, dtype='float')
cov = np.array(cov, dtype='float')
next_values = np.random.multivariate_normal(mean, cov, 1)
next_x[node] = next_values[0][0]
next_y[node] = next_values[0][1]
return next_x, next_y
def get_mean_error(ret_nodes, nodes, assumedNodesPresent, trueNodesPresent, using_cuda, look_up):
'''
Parameters
==========
ret_nodes : A tensor of shape pred_length x numNodes x 2
Contains the predicted positions for the nodes
nodes : A tensor of shape pred_length x numNodes x 2
Contains the true positions for the nodes
nodesPresent lists: A list of lists, of size pred_length
Each list contains the nodeIDs of the nodes present at that time-step
look_up : lookup table for determining which ped is in which array index
Returns
=======
Error : Mean euclidean distance between predicted trajectory and the true trajectory
'''
pred_length = ret_nodes.size()[0]
error = torch.zeros(pred_length)
if using_cuda:
error = error.cuda()
for tstep in range(pred_length):
counter = 0
for nodeID in assumedNodesPresent[tstep]:
nodeID = int(nodeID)
if nodeID not in trueNodesPresent[tstep]:
continue
nodeID = look_up[nodeID]
pred_pos = ret_nodes[tstep, nodeID, :]
true_pos = nodes[tstep, nodeID, :]
error[tstep] += torch.norm(pred_pos - true_pos, p=2)
counter += 1
if counter != 0:
error[tstep] = error[tstep] / counter
return torch.mean(error)
def get_final_error(ret_nodes, nodes, assumedNodesPresent, trueNodesPresent, look_up):
'''
Parameters
==========
ret_nodes : A tensor of shape pred_length x numNodes x 2
Contains the predicted positions for the nodes
nodes : A tensor of shape pred_length x numNodes x 2
Contains the true positions for the nodes
nodesPresent lists: A list of lists, of size pred_length
Each list contains the nodeIDs of the nodes present at that time-step
look_up : lookup table for determining which ped is in which array index
Returns
=======
Error : Mean final euclidean distance between predicted trajectory and the true trajectory
'''
pred_length = ret_nodes.size()[0]
error = 0
counter = 0
# Last time-step
tstep = pred_length - 1
for nodeID in assumedNodesPresent[tstep]:
nodeID = int(nodeID)
if nodeID not in trueNodesPresent[tstep]:
continue
nodeID = look_up[nodeID]
pred_pos = ret_nodes[tstep, nodeID, :]
true_pos = nodes[tstep, nodeID, :]
error += torch.norm(pred_pos - true_pos, p=2)
counter += 1
if counter != 0:
error = error / counter
return error
def Gaussian2DLikelihoodInference(outputs, targets, nodesPresent, pred_length, look_up):
'''
Computes the likelihood of predicted locations under a bivariate Gaussian distribution at test time
Parameters:
outputs: Torch variable containing tensor of shape seq_length x numNodes x 1 x output_size
targets: Torch variable containing tensor of shape seq_length x numNodes x 1 x input_size
nodesPresent : A list of lists, of size seq_length. Each list contains the nodeIDs that are present in the frame
'''
seq_length = outputs.size()[0]
obs_length = seq_length - pred_length
# Extract mean, std devs and correlation
mux, muy, sx, sy, corr = getCoef(outputs)
# Compute factors
normx = targets[:, :, 0] - mux
normy = targets[:, :, 1] - muy
sxsy = sx * sy
z = (normx/sx)**2 + (normy/sy)**2 - 2*((corr*normx*normy)/sxsy)
negRho = 1 - corr**2
# Numerator
result = torch.exp(-z/(2*negRho))
# Normalization factor
denom = 2 * np.pi * (sxsy * torch.sqrt(negRho))
# Final PDF calculation
result = result / denom
# Numerical stability
epsilon = 1e-20
result = -torch.log(torch.clamp(result, min=epsilon))
#print(result)
loss = 0
counter = 0
for framenum in range(obs_length, seq_length):
nodeIDs = nodesPresent[framenum]
nodeIDs = [int(nodeID) for nodeID in nodeIDs]
for nodeID in nodeIDs:
nodeID = look_up[nodeID]
loss = loss + result[framenum, nodeID]
counter = counter + 1
if counter != 0:
return loss / counter
else:
return loss
def Gaussian2DLikelihood(outputs, targets, nodesPresent, look_up):
'''
params:
outputs : predicted locations
targets : true locations
assumedNodesPresent : Nodes assumed to be present in each frame in the sequence
nodesPresent : True nodes present in each frame in the sequence
look_up : lookup table for determining which ped is in which array index
'''
seq_length = outputs.size()[0]
# Extract mean, std devs and correlation
mux, muy, sx, sy, corr = getCoef(outputs)
# Compute factors
normx = targets[:, :, 0] - mux
normy = targets[:, :, 1] - muy
sxsy = sx * sy
z = (normx/sx)**2 + (normy/sy)**2 - 2*((corr*normx*normy)/sxsy)
negRho = 1 - corr**2
# Numerator
result = torch.exp(-z/(2*negRho))
# Normalization factor
denom = 2 * np.pi * (sxsy * torch.sqrt(negRho))
# Final PDF calculation
result = result / denom
# Numerical stability
epsilon = 1e-20
result = -torch.log(torch.clamp(result, min=epsilon))
loss = 0
counter = 0
for framenum in range(seq_length):
nodeIDs = nodesPresent[framenum]
nodeIDs = [int(nodeID) for nodeID in nodeIDs]
for nodeID in nodeIDs:
nodeID = look_up[nodeID]
loss = loss + result[framenum, nodeID]
counter = counter + 1
if counter != 0:
return loss / counter
else:
return loss
##################### Data related methods ######################
def remove_file_extention(file_name):
# remove file extension (.txt) given filename
return file_name.split('.')[0]
def add_file_extention(file_name, extention):
# add file extension (.txt) given filename
return file_name + '.' + extention
def clear_folder(path):
# remove all files in the folder
if os.path.exists(path):
shutil.rmtree(path)
print("Folder succesfully removed: ", path)
else:
print("No such path: ",path)
def delete_file(path, file_name_list):
# delete given file list
for file in file_name_list:
file_path = os.path.join(path, file)
try:
if os.path.isfile(file_path):
os.remove(file_path)
print("File succesfully deleted: ", file_path)
else: ## Show an error ##
print("Error: %s file not found" % file_path)
except OSError as e: ## if failed, report it back to the user ##
print ("Error: %s - %s." % (e.filename,e.strerror))
def get_all_file_names(path):
# return all file names given directory
files = []
for (dirpath, dirnames, filenames) in walk(path):
files.extend(filenames)
break
return files
def create_directories(base_folder_path, folder_list):
# create folders using a folder list and path
for folder_name in folder_list:
directory = os.path.join(base_folder_path, folder_name)
if not os.path.exists(directory):
os.makedirs(directory)
def unique_list(l):
# get unique elements from list
x = []
for a in l:
if a not in x:
x.append(a)
return x
def angle_between(p1, p2):
# return angle between two points
ang1 = np.arctan2(*p1[::-1])
ang2 = np.arctan2(*p2[::-1])
return ((ang1 - ang2) % (2 * np.pi))
def vectorize_seq(x_seq, PedsList_seq, lookup_seq):
#substract first frame value to all frames for a ped.Therefore, convert absolute pos. to relative pos.
first_values_dict = WriteOnceDict()
vectorized_x_seq = x_seq.clone()
for ind, frame in enumerate(x_seq):
for ped in PedsList_seq[ind]:
first_values_dict[ped] = frame[lookup_seq[ped], 0:2]
vectorized_x_seq[ind, lookup_seq[ped], 0:2] = frame[lookup_seq[ped], 0:2] - first_values_dict[ped][0:2]
return vectorized_x_seq, first_values_dict
def translate(x_seq, PedsList_seq, lookup_seq, value):
# translate al trajectories given x and y values
vectorized_x_seq = x_seq.clone()
for ind, frame in enumerate(x_seq):
for ped in PedsList_seq[ind]:
vectorized_x_seq[ind, lookup_seq[ped], 0:2] = frame[lookup_seq[ped], 0:2] - value[0:2]
return vectorized_x_seq
def revert_seq(x_seq, PedsList_seq, lookup_seq, first_values_dict):
# convert velocity array to absolute position array
absolute_x_seq = x_seq.clone()
for ind, frame in enumerate(x_seq):
for ped in PedsList_seq[ind]:
absolute_x_seq[ind, lookup_seq[ped], 0:2] = frame[lookup_seq[ped], 0:2] + first_values_dict[ped][0:2]
return absolute_x_seq
def rotate(origin, point, angle):
"""
Rotate a point counterclockwise by a given angle around a given origin.
The angle should be given in radians.
"""
ox, oy = origin
px, py = point
qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
#return torch.cat([qx, qy])
return [qx, qy]
def time_lr_scheduler(optimizer, epoch, lr_decay=0.5, lr_decay_epoch=10):
"""Decay learning rate by a factor of lr_decay every lr_decay_epoch epochs"""
if epoch % lr_decay_epoch:
return optimizer
print("Optimizer learning rate has been decreased.")
for param_group in optimizer.param_groups:
param_group['lr'] *= (1. / (1. + lr_decay * epoch))
return optimizer
def sample_validation_data(x_seq, Pedlist, grid, args, net, look_up, num_pedlist, dataloader):
'''
The validation sample function
params:
x_seq: Input positions
Pedlist: Peds present in each frame
args: arguments
net: The model
num_pedlist : number of peds in each frame
look_up : lookup table for determining which ped is in which array index
'''
# Number of peds in the sequence
numx_seq = len(look_up)
total_loss = 0
# Construct variables for hidden and cell states
with torch.no_grad():
hidden_states = Variable(torch.zeros(numx_seq, net.args.rnn_size))
if args.use_cuda:
hidden_states = hidden_states.cuda()
if not args.gru:
cell_states = Variable(torch.zeros(numx_seq, net.args.rnn_size))
if args.use_cuda:
cell_states = cell_states.cuda()
else:
cell_states = None
ret_x_seq = Variable(torch.zeros(args.seq_length, numx_seq, 2))
# Initialize the return data structure
if args.use_cuda:
ret_x_seq = ret_x_seq.cuda()
ret_x_seq[0] = x_seq[0]
# For the observed part of the trajectory
for tstep in range(args.seq_length -1):
loss = 0
# Do a forward prop
out_, hidden_states, cell_states = net(x_seq[tstep].view(1, numx_seq, 2), [grid[tstep]], hidden_states, cell_states, [Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
# loss_obs = Gaussian2DLikelihood(out_obs, x_seq[tstep+1].view(1, numx_seq, 2), [Pedlist[tstep+1]])
# Extract the mean, std and corr of the bivariate Gaussian
mux, muy, sx, sy, corr = getCoef(out_)
# Sample from the bivariate Gaussian
next_x, next_y = sample_gaussian_2d(mux.data, muy.data, sx.data, sy.data, corr.data, Pedlist[tstep], look_up)
ret_x_seq[tstep + 1, :, 0] = next_x
ret_x_seq[tstep + 1, :, 1] = next_y
loss = Gaussian2DLikelihood(out_[0].view(1, out_.size()[1], out_.size()[2]), x_seq[tstep].view(1, numx_seq, 2), [Pedlist[tstep]], look_up)
total_loss += loss
return ret_x_seq, total_loss / args.seq_length
def sample_validation_data_vanilla(x_seq, Pedlist, args, net, look_up, num_pedlist, dataloader):
'''
The validation sample function for vanilla method
params:
x_seq: Input positions
Pedlist: Peds present in each frame
args: arguments
net: The model
num_pedlist : number of peds in each frame
look_up : lookup table for determining which ped is in which array index
'''
# Number of peds in the sequence
numx_seq = len(look_up)
total_loss = 0
# Construct variables for hidden and cell states
hidden_states = Variable(torch.zeros(numx_seq, net.args.rnn_size), volatile=True)
if args.use_cuda:
hidden_states = hidden_states.cuda()
if not args.gru:
cell_states = Variable(torch.zeros(numx_seq, net.args.rnn_size), volatile=True)
if args.use_cuda:
cell_states = cell_states.cuda()
else:
cell_states = None
ret_x_seq = Variable(torch.zeros(args.seq_length, numx_seq, 2), volatile=True)
# Initialize the return data structure
if args.use_cuda:
ret_x_seq = ret_x_seq.cuda()
ret_x_seq[0] = x_seq[0]
# For the observed part of the trajectory
for tstep in range(args.seq_length -1):
loss = 0
# Do a forward prop
out_, hidden_states, cell_states = net(x_seq[tstep].view(1, numx_seq, 2), hidden_states, cell_states, [Pedlist[tstep]], [num_pedlist[tstep]], dataloader, look_up)
# loss_obs = Gaussian2DLikelihood(out_obs, x_seq[tstep+1].view(1, numx_seq, 2), [Pedlist[tstep+1]])
# Extract the mean, std and corr of the bivariate Gaussian
mux, muy, sx, sy, corr = getCoef(out_)
# Sample from the bivariate Gaussian
next_x, next_y = sample_gaussian_2d(mux.data, muy.data, sx.data, sy.data, corr.data, Pedlist[tstep], look_up)
ret_x_seq[tstep + 1, :, 0] = next_x
ret_x_seq[tstep + 1, :, 1] = next_y
loss = Gaussian2DLikelihood(out_[0].view(1, out_.size()[1], out_.size()[2]), x_seq[tstep].view(1, numx_seq, 2), [Pedlist[tstep]], look_up)
total_loss += loss
return ret_x_seq, total_loss / args.seq_length
def rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq):
# rotate sequence given angle
origin = (0, 0)
vectorized_x_seq = x_seq.clone()
for ind, frame in enumerate(x_seq):
for ped in PedsList_seq[ind]:
point = frame[lookup_seq[ped], 0:2]
rotated_point = rotate(origin, point, angle)
vectorized_x_seq[ind, lookup_seq[ped], 0] = rotated_point[0]
vectorized_x_seq[ind, lookup_seq[ped], 1] = rotated_point[1]
return vectorized_x_seq