This repository has been archived by the owner on Sep 16, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 274
/
s2s_model.py
282 lines (260 loc) · 10.4 KB
/
s2s_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import pdb
import random
import copy
import numpy as np
import tensorflow as tf
import data_utils
class S2SModel(object):
def __init__(self,
source_vocab_size,
target_vocab_size,
buckets,
size,
dropout,
num_layers,
max_gradient_norm,
batch_size,
learning_rate,
num_samples,
forward_only=False,
dtype=tf.float32):
# init member variales
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.buckets = buckets
self.batch_size = batch_size
self.learning_rate = learning_rate
# LSTM cells
cell = tf.contrib.rnn.BasicLSTMCell(size)
cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers)
output_projection = None
softmax_loss_function = None
# 如果vocabulary太大,我们还是按照vocabulary来sample的话,内存会爆
if num_samples > 0 and num_samples < self.target_vocab_size:
print('开启投影:{}'.format(num_samples))
w_t = tf.get_variable(
"proj_w",
[self.target_vocab_size, size],
dtype=dtype
)
w = tf.transpose(w_t)
b = tf.get_variable(
"proj_b",
[self.target_vocab_size],
dtype=dtype
)
output_projection = (w, b)
def sampled_loss(labels, logits):
labels = tf.reshape(labels, [-1, 1])
# 因为选项有选fp16的训练,这里同意转换为fp32
local_w_t = tf.cast(w_t, tf.float32)
local_b = tf.cast(b, tf.float32)
local_inputs = tf.cast(logits, tf.float32)
return tf.cast(
tf.nn.sampled_softmax_loss(
weights=local_w_t,
biases=local_b,
labels=labels,
inputs=local_inputs,
num_sampled=num_samples,
num_classes=self.target_vocab_size
),
dtype
)
softmax_loss_function = sampled_loss
# seq2seq_f
def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):
tmp_cell = copy.deepcopy(cell)
return tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
encoder_inputs,
decoder_inputs,
tmp_cell,
num_encoder_symbols=source_vocab_size,
num_decoder_symbols=target_vocab_size,
embedding_size=size,
output_projection=output_projection,
feed_previous=do_decode,
dtype=dtype
)
# inputs
self.encoder_inputs = []
self.decoder_inputs = []
self.decoder_weights = []
# buckets中的最后一个是最大的(即第“-1”个)
for i in range(buckets[-1][0]):
self.encoder_inputs.append(tf.placeholder(
tf.int32,
shape=[None],
name='encoder_input_{}'.format(i)
))
# 输出比输入大 1,这是为了保证下面的targets可以向左shift 1位
for i in range(buckets[-1][1] + 1):
self.decoder_inputs.append(tf.placeholder(
tf.int32,
shape=[None],
name='decoder_input_{}'.format(i)
))
self.decoder_weights.append(tf.placeholder(
dtype,
shape=[None],
name='decoder_weight_{}'.format(i)
))
targets = [
self.decoder_inputs[i + 1] for i in range(buckets[-1][1])
]
if forward_only:
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)
if output_projection is not None:
for b in range(len(buckets)):
self.outputs[b] = [
tf.matmul(
output,
output_projection[0]
) + output_projection[1]
for output in self.outputs[b]
]
else:
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, False),
softmax_loss_function=softmax_loss_function
)
params = tf.trainable_variables()
opt = tf.train.AdamOptimizer(
learning_rate=learning_rate
)
if not forward_only:
self.gradient_norms = []
self.updates = []
for output, loss in zip(self.outputs, self.losses):
gradients = tf.gradients(loss, params)
clipped_gradients, norm = tf.clip_by_global_norm(
gradients,
max_gradient_norm
)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, params)
))
# self.saver = tf.train.Saver(tf.all_variables())
self.saver = tf.train.Saver(
tf.all_variables(),
write_version=tf.train.SaverDef.V2
)
def step(
self,
session,
encoder_inputs,
decoder_inputs,
decoder_weights,
bucket_id,
forward_only
):
encoder_size, decoder_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError(
"Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size)
)
if len(decoder_inputs) != decoder_size:
raise ValueError(
"Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_inputs), decoder_size)
)
if len(decoder_weights) != decoder_size:
raise ValueError(
"Weights length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_weights), decoder_size)
)
input_feed = {}
for i in range(encoder_size):
input_feed[self.encoder_inputs[i].name] = encoder_inputs[i]
for i in range(decoder_size):
input_feed[self.decoder_inputs[i].name] = decoder_inputs[i]
input_feed[self.decoder_weights[i].name] = decoder_weights[i]
# 理论上decoder inputs和decoder target都是n位
# 但是实际上decoder inputs分配了n+1位空间
# 不过inputs是第[0, n),而target是[1, n+1),刚好错开一位
# 最后这一位是没东西的,所以要补齐最后一位,填充0
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
if not forward_only:
output_feed = [
self.updates[bucket_id],
self.gradient_norms[bucket_id],
self.losses[bucket_id]
]
output_feed.append(self.outputs[bucket_id][i])
else:
output_feed = [self.losses[bucket_id]]
for i in range(decoder_size):
output_feed.append(self.outputs[bucket_id][i])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], outputs[3:]
else:
return None, outputs[0], outputs[1:]
def get_batch_data(self, bucket_dbs, bucket_id):
data = []
data_in = []
bucket_db = bucket_dbs[bucket_id]
for _ in range(self.batch_size):
ask, answer = bucket_db.random()
data.append((ask, answer))
data_in.append((answer, ask))
return data, data_in
def get_batch(self, bucket_dbs, bucket_id, data):
encoder_size, decoder_size = self.buckets[bucket_id]
# bucket_db = bucket_dbs[bucket_id]
encoder_inputs, decoder_inputs = [], []
for encoder_input, decoder_input in data:
# encoder_input, decoder_input = random.choice(data[bucket_id])
# encoder_input, decoder_input = bucket_db.random()
encoder_input = data_utils.sentence_indice(encoder_input)
decoder_input = data_utils.sentence_indice(decoder_input)
# Encoder
encoder_pad = [data_utils.PAD_ID] * (
encoder_size - len(encoder_input)
)
encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
# Decoder
decoder_pad_size = decoder_size - len(decoder_input) - 2
decoder_inputs.append(
[data_utils.GO_ID] + decoder_input +
[data_utils.EOS_ID] +
[data_utils.PAD_ID] * decoder_pad_size
)
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
# batch encoder
for i in range(encoder_size):
batch_encoder_inputs.append(np.array(
[encoder_inputs[j][i] for j in range(self.batch_size)],
dtype=np.int32
))
# batch decoder
for i in range(decoder_size):
batch_decoder_inputs.append(np.array(
[decoder_inputs[j][i] for j in range(self.batch_size)],
dtype=np.int32
))
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for j in range(self.batch_size):
if i < decoder_size - 1:
target = decoder_inputs[j][i + 1]
if i == decoder_size - 1 or target == data_utils.PAD_ID:
batch_weight[j] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights