-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathsplit.py
40 lines (27 loc) · 1.03 KB
/
split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
from sklearn.model_selection import StratifiedKFold
import numpy as np
from utils import Parser
args = Parser('settings')
root = args.data_dir
def write(data, fname, root=root):
fname = os.path.join(root, fname)
with open(fname, 'w') as f:
f.write('\n'.join(data))
hgg = os.listdir(os.path.join(root, 'HGG'))
hgg = [os.path.join('HGG', f) for f in hgg]
lgg = os.listdir(os.path.join(root, 'LGG'))
lgg = [os.path.join('LGG', f) for f in lgg]
X = hgg + lgg
Y = [1]*len(hgg) + [0]*len(lgg)
write(X, 'all.txt')
X, Y = np.array(X), np.array(Y)
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=2018)
for k, (train_index, valid_index) in enumerate(skf.split(Y, Y)):
train_list = list(X[train_index])
valid_list = list(X[valid_index])
write(train_list, 'train_{}.txt'.format(k))
write(valid_list, 'valid_{}.txt'.format(k))
test = os.listdir(os.path.join(args.test_data_dir))
test = [f for f in test if not (f.endswith('.csv') or f.endswith('.txt'))]
write(test, 'test.txt', root=args.test_data_dir)