-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcreateBrainParcellation.py
99 lines (81 loc) · 4.33 KB
/
createBrainParcellation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import argparse
import os
import subprocess
import SimpleITK as sitk
import numpy as np
from nipype.interfaces.ants import N4BiasFieldCorrection
from natsort import natsorted
def ReadImage(file_path):
''' This code returns the numpy nd array for a MR image at path'''
return sitk.GetArrayFromImage(sitk.ReadImage(file_path)).astype(np.float32)
def N4ITK(filepath, output_name):
print('N4ITK working on: %s' %filepath)
n4 = N4BiasFieldCorrection()
n4.inputs.dimension = 3
n4.inputs.input_image = filepath
n4.inputs.output_image = output_name
n4.run()
def RegisterBrain(t1_path, ref_path, subject2mni_mat, mni2subject_mat):
print('Working on registration!')
# Create the affine transformation matrix from subject space to MNI152 1mm space
subprocess.call(["flirt", "-in", t1_path, "-ref", ref_path, "-omat", subject2mni_mat])
subprocess.call(["convert_xfm", "-omat", mni2subject_mat, "-inverse", subject2mni_mat])
print('Finish this subject!')
def RegisterLabels2Subject(refVol_path, bp_filepaths, mni2subject_mat, temp_dir):
''' register indivudial labels from MNI 152 space to subject space '''
for j in range(len(bp_filepaths)):
label_name = os.path.join(temp_dir, "lab"+str(j+1)+".nii.gz")
# Register Brain Labels to Subject Space
subprocess.call(["flirt", "-in", bp_filepaths[j], "-ref", refVol_path, "-out", label_name, "-init", mni2subject_mat, "-applyxfm"])
def SubjectLabels2ParcellationArgmax(subject_bp_filepaths, subject_name):
print('Mapping brain parcellation to subject')
subjectBrainParcellations = np.zeros((len(subject_bp_filepaths)+1, 155, 240, 240), dtype=np.float32)
img = sitk.ReadImage(subject_bp_filepaths[0])
for j, bp in enumerate(subject_bp_filepaths):
subjectBrainParcellations[j+1,:] = ReadImage(bp)
brainParcellation = np.argmax(subjectBrainParcellations, axis=0)
brainParcellationFloat = brainParcellation.astype(np.float32)
brainParcellationFloat_img = sitk.GetImageFromArray(brainParcellationFloat)
brainParcellationFloat_img.CopyInformation(img)
sitk.WriteImage(brainParcellationFloat_img, subject_name)
def Remove(filepaths):
for file in filepaths:
os.remove(file)
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input", help="the input directory to a BraTS subject T1 image", type=str)
parser.add_argument("-o", "--output", help="the output directory to save the subject's brain parcellation", type=str)
parser.add_argument("-n", "--name", help="subject name", type=str)
args = parser.parse_args()
print("Creating a HarvardOxford Subcortical Brain Parcellation in the Subject Space!!!")
filepath = args.input
output_dir = args.output
root_dir = os.path.split(filepath)[0]
file_name = os.path.split(filepath)[1]
temp_dir = os.path.join(root_dir, '.temp_bp')
if not os.path.exists(temp_dir):
os.mkdir(temp_dir)
# Apply N4ITK bias correction on MR t1 images
N4ITK_name = file_name[:file_name.find(".nii.gz")]+'_temp.nii.gz'
N4ITK_path = os.path.join(temp_dir, N4ITK_name)
#N4ITK(filepath, N4ITK_path)
# Registration
mni152_1mm_path = './MNI152_T1_1mm_brain.nii.gz'
subject2mni_path = os.path.join(temp_dir, file_name[:file_name.index('.nii.gz')]+'_invol2refvol.mat')
mni2subject_path = os.path.join(temp_dir, file_name[:file_name.index('.nii.gz')]+'_refvol2invol.mat')
#RegisterBrain(N4ITK_path, mni152_1mm_path, subject2mni_path, mni2subject_path)
# Mapping individual brain parcellation to subject
brain_parcellation_path = './atlases/HarvardOxford'
bp_filepaths = [os.path.join(root, name) for root, dirs, files in os.walk(brain_parcellation_path) for name in files if name.endswith('.nii.gz')]
bp_filepaths = natsorted(bp_filepaths, key=lambda y: y.lower())
refVol_path = filepath
#RegisterLabels2Subject(refVol_path, bp_filepaths, mni2subject_path, temp_dir)
# Merge individual labels to the brain parcellation in subject space using argmax
subject_bp_filepaths = [os.path.join(root, name) for root, dirs, files in os.walk(temp_dir) for name in files if 'HarvardOxford' not in name and 'lab' in name and name.endswith('.nii.gz')]
subject_bp_filepaths = natsorted(subject_bp_filepaths, key=lambda y: y.lower())
subject_name = os.path.join(output_dir, args.name+'_HarvardOxford-sub.nii.gz')
SubjectLabels2ParcellationArgmax(subject_bp_filepaths, subject_name)
Remove(subject_bp_filepaths)
os.remove(N4ITK_path)
os.remove(subject2mni_path)
os.remove(mni2subject_path)
os.rmdir(temp_dir)