-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassify_using_tractographic_feature.py
217 lines (173 loc) · 10 KB
/
classify_using_tractographic_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import sklearn
import logging
import csv
import argparse
import pandas as pd
import numpy as np
from scipy.io import loadmat
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import RFECV
from sklearn import svm
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
import paths
import utils
from feature_extractor import get_weighted_connectivity_feature_vectors_train, get_weighted_connectivity_feature_vectors_valid, get_weighted_connectivity_feature_vectors_test
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--mode", help="can be gt or predicted", default='gt', type=str)
args = parser.parse_args()
# setup logs
log = os.path.join(os.getcwd(), 'log_connectivity_ensemble_26_svm.txt')
fmt = '%(asctime)s %(message)s'
logging.basicConfig(level=logging.INFO, format=fmt, filename=log)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(fmt))
logging.getLogger('').addHandler(console)
# Loading Training
# mode = 'predicted'
mode = args.mode
logging.info('loading training set...')
pat_names_train, gt, W_dsi_pass_histogram_features, W_nrm_pass_histogram_features, W_bin_pass_histogram_features, W_dsi_end_histogram_features, W_nrm_end_histogram_features, W_bin_end_histogram_features = get_weighted_connectivity_feature_vectors_train(mode=mode)
# Validation
logging.info('loading validation set...')
pat_names_valid, W_dsi_pass_histogram_features_valid, W_nrm_pass_histogram_features_valid, W_bin_pass_histogram_features_valid, W_dsi_end_histogram_features_valid, W_nrm_end_histogram_features_valid, W_bin_end_histogram_features_valid = get_weighted_connectivity_feature_vectors_valid()
# Testing
logging.info('loading testing set...')
pat_names_test, W_dsi_pass_histogram_features_test, W_nrm_pass_histogram_features_test, W_bin_pass_histogram_features_test, W_dsi_end_histogram_features_test, W_nrm_end_histogram_features_test, W_bin_end_histogram_features_test = get_weighted_connectivity_feature_vectors_test()
# Feature normalizations
logging.info('normalizing features...')
scaler = StandardScaler()
# Normalize Training Features
#normalized_W_dsi_pass_histogram_features = scaler.fit_transform(W_dsi_pass_histogram_features)
#normalized_W_nrm_pass_histogram_features = scaler.fit_transform(W_nrm_pass_histogram_features)
normalized_W_bin_pass_histogram_features = scaler.fit_transform(W_bin_pass_histogram_features)
#normalized_W_dsi_end_histogram_features = scaler.fit_transform(W_dsi_end_histogram_features)
#normalized_W_nrm_end_histogram_features = scaler.fit_transform(W_nrm_end_histogram_features)
#normalized_W_bin_end_histogram_features = scaler.fit_transform(W_bin_end_histogram_features)
# Normalize Validation features
#normalized_W_dsi_pass_histogram_features_valid = scaler.fit_transform(W_dsi_pass_histogram_features_valid)
#normalized_W_nrm_pass_histogram_features_valid = scaler.fit_transform(W_nrm_pass_histogram_features_valid)
normalized_W_bin_pass_histogram_features_valid = scaler.fit_transform(W_bin_pass_histogram_features_valid)
#normalized_W_dsi_end_histogram_features_valid = scaler.fit_transform(W_dsi_end_histogram_features_valid)
#normalized_W_nrm_end_histogram_features_valid = scaler.fit_transform(W_nrm_end_histogram_features_valid)
#normalized_W_bin_end_histogram_features_valid = scaler.fit_transform(W_bin_end_histogram_features_valid)
# Normalize Testing features
#normalized_W_dsi_pass_histogram_features_test = scaler.fit_transform(W_dsi_pass_histogram_features_test)
#normalized_W_nrm_pass_histogram_features_test = scaler.fit_transform(W_nrm_pass_histogram_features_test)
normalized_W_bin_pass_histogram_features_test = scaler.fit_transform(W_bin_pass_histogram_features_test)
#normalized_W_dsi_end_histogram_features_test = scaler.fit_transform(W_dsi_end_histogram_features_test)
#normalized_W_nrm_end_histogram_features_test = scaler.fit_transform(W_nrm_end_histogram_features_test)
#normalized_W_bin_end_histogram_features_test = scaler.fit_transform(W_bin_end_histogram_features_test)
# Perforamce Feature Selection
# Remove features with low variance
logging.info('Remove features with low variance...')
sel = VarianceThreshold(0)
#sel.fit(normalized_W_dsi_pass_histogram_features)
#selected_normalized_W_dsi_pass_histogram_features = sel.transform(normalized_W_dsi_pass_histogram_features)
#selected_normalized_W_dsi_pass_histogram_features_valid = sel.transform(normalized_W_dsi_pass_histogram_features_valid)
#sel.fit(normalized_W_nrm_pass_histogram_features)
#selected_normalized_W_nrm_pass_histogram_features = sel.transform(normalized_W_nrm_pass_histogram_features)
#selected_normalized_W_nrm_pass_histogram_features_valid = sel.transform(normalized_W_nrm_pass_histogram_features_valid)
# W_bin_pass
# 12
# 69.65%
sel.fit(normalized_W_bin_pass_histogram_features)
selected_normalized_W_bin_pass_histogram_features = sel.transform(normalized_W_bin_pass_histogram_features)
selected_normalized_W_bin_pass_histogram_features_valid = sel.transform(normalized_W_bin_pass_histogram_features_valid)
selected_normalized_W_bin_pass_histogram_features_test = sel.transform(normalized_W_bin_pass_histogram_features_test)
#aal_list = range(1,117)
#selected_aal_list = [i for idx, i in enumerate(aal_list) if sel.get_support()[idx]]
#print(len(selected_aal_list))
#sel.fit(normalized_W_dsi_end_histogram_features)
#selected_normalized_W_dsi_end_histogram_features = sel.transform(normalized_W_dsi_end_histogram_features)
#selected_normalized_W_dsi_end_histogram_features_valid = sel.transform(normalized_W_dsi_end_histogram_features_valid)
#sel.fit(normalized_W_nrm_end_histogram_features)
#selected_normalized_W_nrm_end_histogram_features = sel.transform(normalized_W_nrm_end_histogram_features)
#selected_normalized_W_nrm_end_histogram_features_valid = sel.transform(normalized_W_nrm_end_histogram_features_valid)
# W_dsi_end
# 3
#sel.fit(normalized_W_bin_end_histogram_features)
#selected_normalized_W_bin_end_histogram_features = sel.transform(normalized_W_bin_end_histogram_features)
#selected_normalized_W_bin_end_histogram_features_valid = sel.transform(normalized_W_bin_end_histogram_features_valid)
#selected_aal_list = [i for idx, i in enumerate(aal_list) if sel.get_support()[idx]]
#print(len(selected_aal_list))
# ============================================= Classification ========================================================= #
# five fold cross-validation
# repeat 1000 times
n_splits = 5
n_repeats = 1000
rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=36851234)
scores_rskf_valid = np.zeros(n_splits*n_repeats,dtype=np.float32)
scores_rskf_train = np.zeros(n_splits*n_repeats,dtype=np.float32)
X = selected_normalized_W_bin_pass_histogram_features
# ground truth for classification task
y = np.copy(gt[:,0])
X_valid = selected_normalized_W_bin_pass_histogram_features_valid
y_valid_prob = np.zeros((28, 3), np.float64)
X_test = selected_normalized_W_bin_pass_histogram_features_test
y_test_prob = np.zeros((77, 3), np.float64)
estimator=svm.LinearSVC(C=1,max_iter=3000)
#estimator = RandomForestClassifier(n_estimators=100)
rfecv = RFECV(estimator, step=1, cv=rskf, scoring='accuracy', n_jobs = -1)
rfecv.fit(X, y)
X_rfecv = rfecv.transform(X)
X_valid_rfecv = rfecv.transform(X_valid)
X_test_rfecv = rfecv.transform(X_test)
assert(X_rfecv.shape[1] == X_valid_rfecv.shape[1] == X_test_rfecv.shape[1])
assert(X_rfecv.shape[0] == 59)
assert(X_valid_rfecv.shape[0] == 28)
assert(X_test_rfecv.shape[0] == 77)
logging.info('RF Classifier, Optimal number of features: %d' % X_rfecv.shape[1])
#logging.info('SVM Classifier, Optimal number of features: %d' % X_rfecv.shape[1])
idx = 0
for train_index, test_index in rskf.split(X_rfecv, y):
X_train, X_test = X_rfecv[train_index], X_rfecv[test_index]
y_train, y_test = y[train_index], y[test_index]
# SVM classifier
clf = svm.LinearSVC(C=1, max_iter=3000)
# Random Forest Classifier
#clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test)
scores_rskf_valid[idx] = accuracy
scores_rskf_train[idx] = clf.score(X_train, y_train)
idx += 1
prob_clf = CalibratedClassifierCV(base_estimator=clf, cv='prefit')
prob_clf.fit(X_train, y_train)
y_v_prob = prob_clf.predict_proba(X_valid_rfecv)
y_valid_prob += y_v_prob
y_t_prob = prob_clf.predict_proba(X_test_rfecv)
y_test_prob += y_t_prob
# ======= Plot ======== #
#t = np.arange(0, n_splits*n_repeats)
#plt.plot(t, scores_rskf_train, 'r-', scores_rskf_valid, 'b-')
#plt.show()
svm_accuracy_train, svm_std_train = np.mean(scores_rskf_train), np.std(scores_rskf_train)
svm_accuracy_valid, svm_std_valid = np.mean(scores_rskf_valid), np.std(scores_rskf_valid)
logging.info("Best Scores of weighted tractographic features - Using SVM - Training Accuracy: %0.4f (+/- %0.4f)" %(svm_accuracy_train, svm_std_train))
logging.info("Best Scores of weighted tractographic features - Using SVM - Validation Accuracy: %0.4f (+/- %0.4f)" %(svm_accuracy_valid, svm_std_valid))
y_valid_pred = np.argmax(y_valid_prob, axis=1)
y_valid_pred_days = np.zeros(y_valid_pred.shape)
y_valid_pred_days[y_valid_pred==0] = 150
y_valid_pred_days[y_valid_pred==1] = 380
y_valid_pred_days[y_valid_pred==2] = 520
raw_data_valid = {}
raw_data_valid['name'] = pat_names_valid
raw_data_valid['days'] = y_valid_pred_days
df_valid = pd.DataFrame(raw_data_valid, columns=['name', 'days'])
df_valid.to_csv('survival_W_bin_pass_linearscv_prob_valid.csv', header=False, index=False)
y_test_pred = np.argmax(y_test_prob, axis=1)
y_test_pred_days = np.zeros(y_test_pred.shape)
y_test_pred_days[y_test_pred==0] = 150
y_test_pred_days[y_test_pred==1] = 380
y_test_pred_days[y_test_pred==2] = 520
raw_data_test = {}
raw_data_test['name'] = pat_names_test
raw_data_test['days'] = y_test_pred_days
df_test = pd.DataFrame(raw_data_test, columns=['name', 'days'])
df_test.to_csv('survival_W_bin_pass_linearscv_prob_test.csv', header=False, index=False)