-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathatlas.py
1018 lines (855 loc) · 31.4 KB
/
atlas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
seed = 1337
np.random.seed(seed)
import sys
import os
import json
from fuzzywuzzy import fuzz
from itertools import combinations
import h5py
import random
from keras.models import model_from_json
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional, GRU
from sklearn.preprocessing import StandardScaler
from matplotlib import pyplot
import matplotlib.pyplot as plt
from keras import layers
import keras
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalMaxPooling1D
from keras.datasets import imdb
from numpy import array
from keras.optimizers import RMSprop
from scipy.sparse import coo_matrix
from sklearn.utils import shuffle
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers.convolutional import Convolution1D, MaxPooling1D
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping
from sklearn.model_selection import StratifiedKFold
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from matplotlib import pyplot
import json
import time
prediction_counter = 0
current_file = ""
user_artifact = ""
TESTING_STARTED = False
# Cross validation K-fold
kfold = StratifiedKFold(n_splits=6, shuffle=True, random_state=seed)
cvscores = []
batch_size = 1
input_file_path = ""
input_file = None
mlabels_file = None
mlabels_file_events = None
malicious_labels = None
malicious_labels_events = None
tokenized_elements = {}
maxlen = 400 # cut after this number of words
x_dataset = []
y_dataset = []
z_dataset = []
x_train = []
y_train = []
z_train = []
x_test = []
y_test = []
z_test = []
mal_com_seq_list = [] # list of the malicious sequences
seen_tokenized_sequences = [] # to avoid replicating seen sequences
CUSTOM_FIT = 0 # different settings for fitting
tokenized_x_train_elements = {}
tokenized_elements["process"] = 1
tokenized_elements["file"] = 2
tokenized_elements["IP_Address"] = 3
tokenized_elements["domain_name"] = 4
tokenized_elements["web_object"] = 5
tokenized_elements["read"] = 6
tokenized_elements["write"] = 7
tokenized_elements["delete"] = 8
tokenized_elements["execute"] = 9
tokenized_elements["executed"] = 10
tokenized_elements["fork"] = 11
tokenized_elements["connect"] = 12
tokenized_elements["resolve"] = 13
tokenized_elements["web_request"] = 14
tokenized_elements["refer"] = 15
tokenized_elements["combined_files"] = 16
tokenized_elements["windows_file"] = 17
tokenized_elements["windows_process"] = 18
tokenized_elements["system32_file"] = 19
tokenized_elements["system32_process"] = 20
tokenized_elements["programfiles_file"] = 21
tokenized_elements["programfiles_process"] = 22
tokenized_elements["user_file"] = 23
tokenized_elements["user_process"] = 24
tokenized_elements["bind"] = 25
tokenized_elements["sock_send"] = 26
tokenized_elements["connection"] = 27
tokenized_elements["connected_remote_ip"] = 28
tokenized_elements["session"] = 29
tokenized_elements["connected_session"] = 30
tokenized_x_train_elements[1] = "a"
tokenized_x_train_elements[2] = "b"
tokenized_x_train_elements[3] = "c"
tokenized_x_train_elements[4] = "d"
tokenized_x_train_elements[5] = "e"
tokenized_x_train_elements[6] = "f"
tokenized_x_train_elements[7] = "g"
tokenized_x_train_elements[8] = "h"
tokenized_x_train_elements[9] = "i"
tokenized_x_train_elements[10] = "j"
tokenized_x_train_elements[11] = "k"
tokenized_x_train_elements[12] = "l"
tokenized_x_train_elements[13] = "m"
tokenized_x_train_elements[14] = "n"
tokenized_x_train_elements[15] = "o"
tokenized_x_train_elements[16] = "p"
tokenized_x_train_elements[17] = "q"
tokenized_x_train_elements[18] = "r"
tokenized_x_train_elements[19] = "s"
tokenized_x_train_elements[20] = "t"
tokenized_x_train_elements[21] = "u"
tokenized_x_train_elements[22] = "v"
tokenized_x_train_elements[23] = "w"
tokenized_x_train_elements[24] = "x"
tokenized_x_train_elements[25] = "y"
tokenized_x_train_elements[26] = "z"
tokenized_x_train_elements[27] = "A"
tokenized_x_train_elements[28] = "B"
tokenized_x_train_elements[29] = "C"
tokenized_x_train_elements[30] = "D"
model = None
# Convolution
kernel_size = 5
filters = 64
pool_size = 8
max_features = 31 # number of features=words
embedding_size = 128 # 128 dimensions that the model learns for each word=feature
lstm_output_size = 256
EPOCH = 8
u_thresh = 80
DO_TRAINING = False # True #
load_resampling = True # False #
load_nonsampling = False # True #
load_undersampling = False
SHOW_STAT = False # True # # show graphs after calling fit()
maximum_number_of_test_iterations = 1
def generate_model():
global model
model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(Conv1D(filters, kernel_size, activation='relu'))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(Dropout(0.2))
model.add(LSTM(lstm_output_size))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
if DO_TRAINING:
generate_model()
else:
print("Saved model output/model.h5 has been loaded!")
model = load_model('output/model.h5')
print("%s" % (model.metrics_names[1]))
def load_malicious_labels(file):
global mlabels_file, mlabels_file_events, malicious_labels, malicious_labels_events
training_prefix = "seq_graph_training_preprocessed_logs_"
testing_prefix = "seq_graph_testing_preprocessed_logs_"
if file.startswith(training_prefix):
mlabels_file = open("training_logs/" + file[len(training_prefix):-8] + "/malicious_labels.txt")
mlabels_file_events = open("training_logs/" + file[len(training_prefix):-8] + "/malicious_labels.txt")
if file.startswith(testing_prefix):
mlabels_file = open("testing_logs/" + file[len(testing_prefix):-8] + "/malicious_labels.txt")
mlabels_file_events = open("testing_logs/" + file[len(testing_prefix):-8] + "/malicious_labels.txt")
malicious_labels = mlabels_file.readlines()
malicious_labels = [x.strip().lower() for x in malicious_labels]
malicious_labels_events = mlabels_file_events.readlines()
malicious_labels_events = [x.strip().lower() for x in malicious_labels_events]
def is_matched(string, labels=None):
global malicious_labels
if labels == None:
labels = malicious_labels
for label in labels:
if label in string:
return True
return False
def tokenize_sequences(seq):
seq_list = seq.split()
for i in range(0, int(len(seq_list)/3)):
if seq_list[i*3+1] == "read" or seq_list[i*3+1] == "write" or seq_list[i*3+1] == "delete" or seq_list[i*3+1] == "execute":
if "c:/windows/system32" in seq_list[i*3]:
seq_list[i*3] = "system32_process"
elif "c:/windows" in seq_list[i*3]:
seq_list[i*3] = "windows_process"
elif "c:/programfiles" in seq_list[i*3]:
seq_list[i*3] = "programfiles_process"
elif "c:/users" in seq_list[i*3]:
seq_list[i*3] = "user_process"
else:
seq_list[i*3] = "process"
if not ";" in seq_list[i*3+2]:
if "c:/windows/system32" in seq_list[i*3+2]:
seq_list[i*3+2] = "system32_file"
elif "c:/windows" in seq_list[i*3+2]:
seq_list[i*3+2] = "windows_file"
elif "c:/programfiles" in seq_list[i*3+2]:
seq_list[i*3+2] = "programfiles_file"
elif "c:/users" in seq_list[i*3+2]:
seq_list[i*3+2] = "user_file"
else:
seq_list[i*3+2] = "file"
else:
seq_list[i*3+2] = "combined_files"
elif seq_list[i*3+1] == "fork":
if "c:/windows/system32" in seq_list[i*3]:
seq_list[i*3] = "system32_process"
elif "c:/windows" in seq_list[i*3]:
seq_list[i*3] = "windows_process"
elif "c:/programfiles" in seq_list[i*3]:
seq_list[i*3] = "programfiles_process"
elif "c:/users" in seq_list[i*3]:
seq_list[i*3] = "user_process"
else:
seq_list[i*3] = "process"
if "c:/windows/system32" in seq_list[i*3+2]:
seq_list[i*3+2] = "system32_process"
elif "c:/windows" in seq_list[i*3+2]:
seq_list[i*3+2] = "windows_process"
elif "c:/programfiles" in seq_list[i*3+2]:
seq_list[i*3+2] = "programfiles_process"
elif "c:/users" in seq_list[i*3+2]:
seq_list[i*3+2] = "user_process"
else:
seq_list[i*3+2] = "process"
elif seq_list[i*3+1] == "connect" or seq_list[i*3+1] == "bind":
if "c:/windows/system32" in seq_list[i*3]:
seq_list[i*3] = "system32_process"
elif "c:/windows" in seq_list[i*3]:
seq_list[i*3] = "windows_process"
elif "c:/programfiles" in seq_list[i*3]:
seq_list[i*3] = "programfiles_process"
elif "c:/users" in seq_list[i*3]:
seq_list[i*3] = "user_process"
else:
seq_list[i*3] = "process"
if seq_list[i*3+1] == "connect":
seq_list[i*3+2] = "connection"
else:
seq_list[i*3+2] = "session"
elif seq_list[i*3+1] == "resolve":
seq_list[i*3] = "IP_Address"
seq_list[i*3+2] = "domain_name"
elif seq_list[i*3+1] == "web_request":
seq_list[i*3] = "domain_name"
seq_list[i*3+2] = "web_object"
elif seq_list[i*3+1] == "refer":
seq_list[i*3] = "web_object"
seq_list[i*3+2] = "web_object"
elif seq_list[i*3+1] == "executed":
if "c:/windows/system32" in seq_list[i*3]:
seq_list[i*3] = "system32_file"
elif "c:/windows" in seq_list[i*3]:
seq_list[i*3] = "windows_file"
elif "c:/programfiles" in seq_list[i*3]:
seq_list[i*3] = "programfiles_file"
elif "c:/users" in seq_list[i*3]:
seq_list[i*3] = "user_file"
else:
seq_list[i*3] = "file"
if "c:/windows/system32" in seq_list[i*3+2]:
seq_list[i*3+2] = "system32_process"
elif "c:/windows" in seq_list[i*3+2]:
seq_list[i*3+2] = "windows_process"
elif "c:/programfiles" in seq_list[i*3+2]:
seq_list[i*3+2] = "programfiles_process"
elif "c:/users" in seq_list[i*3+2]:
seq_list[i*3+2] = "user_process"
else:
seq_list[i*3+2] = "process"
elif seq_list[i*3+1] == "sock_send":
seq_list[i*3] = "session"
seq_list[i*3+2] = "session"
elif seq_list[i*3+1] == "connected_remote_ip":
seq_list[i*3] = "IP_Address"
if not seq_list[i*3+2].startswith("connection_"):
if "c:/windows/system32" in seq_list[i*3+2]:
seq_list[i*3+2] = "system32_process"
elif "c:/windows" in seq_list[i*3+2]:
seq_list[i*3+2] = "windows_process"
elif "c:/programfiles" in seq_list[i*3+2]:
seq_list[i*3+2] = "programfiles_process"
elif "c:/users" in seq_list[i*3+2]:
seq_list[i*3+2] = "user_process"
else:
seq_list[i*3+2] = "process"
else:
seq_list[i*3+2] = "connection"
elif seq_list[i*3+1] == "connected_session":
seq_list[i*3] = "IP_Address"
seq_list[i*3+2] = "session"
joined_seq_list = " ".join(seq_list)
return joined_seq_list
def construct_seq_using_labels(lines, possible_labels):
seq_list = []
for line in lines:
line = line.rstrip()
for l in possible_labels:
if l in line.split()[0] or l in line.split()[2]:
seq_list.append(line)
break
joined_seq_list = " ".join(seq_list)
return joined_seq_list
def suggest_ground_truth(lines, possible_labels):
global malicious_labels, seen_tokenized_sequences, mal_com_seq_list
matched_seq_list = []
result_list = []
temp = []
mal_com_seq = ""
mal_combo_list = []
combo_list = [user_artifact]
combo_list.extend(malicious_labels)
CONVERGED = True
while True:
if len(combo_list) == 0:
break
for l in possible_labels:
if l in combo_list:
continue
combo_branch = combo_list[:]
combo_branch.append(l)
combo_branch_seq = construct_seq_using_labels(lines, combo_branch)
if len(combo_branch_seq.split()) > maxlen:
continue
tokenized_combo_branch_seq = tokenize_sequences(combo_branch_seq)
MATCHED = False
if not tokenized_combo_branch_seq in seen_tokenized_sequences:
seen_tokenized_sequences.append(tokenized_combo_branch_seq)
if tokenized_combo_branch_seq in mal_com_seq_list:
MATCHED = True
result_list.append((combo_branch, tokenized_combo_branch_seq, 1))
CONVERGED = True
if not MATCHED:
result_list.append((combo_branch, tokenized_combo_branch_seq, 0))
del combo_list[-1]
return result_list
def testing_suggest_ground_truth(lines, possible_labels):
global malicious_labels, maxlen, x_test, y_test, z_test, u_thresh, user_artifact, maximum_number_of_test_iterations
global prediction_counter, classified_words, classified_words_prediction, classified_words_proba
mal_com_seq_list = []
matched_seq_list = []
result_list = []
temp = []
x_test = []
y_test = []
z_test = []
result_labels = {}
result_labels[1] = [[user_artifact]]
for r in range(1, maximum_number_of_test_iterations+1):
for mal_combo in combinations(malicious_labels, r):
mal_combo_list = [user_artifact]
for i in mal_combo:
mal_combo_list.append(i)
mal_com_seq = construct_seq_using_labels(lines, mal_combo_list)
tokenized_mal_com_seq = tokenize_sequences(mal_com_seq)
if not tokenized_mal_com_seq in mal_com_seq_list:
mal_com_seq_list.append(tokenized_mal_com_seq)
CONVERGED = True
work_list = [[user_artifact]]
work_list_len1 = 0
work_list_len2 = len(work_list)
last_label = [([user_artifact], 0.0)]
last_work_list = []
one_group = []
finished_indexes = []
grouped_labels = []
while True:
done_work_counter = 0
print(work_list)
# work_list = sorted(work_list, key = lambda x: len) #, reverse=True
work_list = sorted(work_list, key=len) # python 3
# print(list(result_labels)[0])
# print(result_labels[1])
if not result_labels[list(result_labels)[-1]] == last_label:
last_label = result_labels[len(list(result_labels))]
print("\nlast predicted labels: ")
for k in list(result_labels):
#print str(result_labels[k])[:8000] + " ..."
print(str(result_labels[k]))
print("---------")
# exit()
if prediction_counter >= maximum_number_of_test_iterations: # 1
file_name = current_file[len("seq_graph_"):-8]
file_path = "output/" + file_name
ofile = open(file_path, "r")
ofile_lines = ofile.readlines()
print("Finished the testing iterations. Bye.")
w_current_file = 'output/eval_' + current_file + '.json'
with open(w_current_file, 'w') as f:
print("wrote data to: " + w_current_file)
classified_words_prediction = classified_words_prediction.tolist() #[:len(z_test)]
classified_words_proba = classified_words_proba.tolist() #[:len(z_test)]
json.dump([[], malicious_labels, user_artifact, classified_words, classified_words_prediction, classified_words_proba, ofile_lines, current_file[36:-8]], f)
# json.dump([[], [], malicious_labels, malicious_labels_events, user_artifact, classified_words, prediction[:, 0].tolist()[:len(z_test)], prediction_proba.tolist()[:len(z_test)], ofile_lines, current_file], f)
exit()
prediction_counter += 1
WORK_UPDATED = False
if len(work_list) == 0:
break
for work in work_list:
done_work_counter += 1
x_test = []
y_test = []
z_test = []
for l in possible_labels:
if l in work:
continue
work_seq = construct_seq_using_labels(lines, work)
work_branch = work[:]
work_branch.append(l)
work_branch_seq = construct_seq_using_labels(lines, work_branch)
if len(work_branch_seq.split()) > maxlen or len(work_seq.split()) == len(work_branch_seq.split()):
continue
tokenized_work_branch_seq = tokenize_sequences(work_branch_seq)
words = []
for w in tokenized_work_branch_seq.split():
words.append(tokenized_elements[w])
x_test.append(words)
# This block is for evaluation purposes
MATCHED = False
if tokenized_work_branch_seq in mal_com_seq_list:
MATCHED = True
y_test.append(1)
if not MATCHED:
y_test.append(0)
z_test.append(work_branch)
work_seq = construct_seq_using_labels(lines, work)
if len(work_seq.split()) > maxlen:
continue
tokenized_work_seq = tokenize_sequences(work_seq)
words = []
for w in tokenized_work_seq.split():
words.append(tokenized_elements[w])
x_test.append(words)
z_test.append(work)
if len(x_test) > 0:
x_test = sequence.pad_sequences(x_test, maxlen=maxlen, padding="post")
predicted_labels, labels_candidates = predict_labels()
lll_c = 0
i_to_del = []
for lll in labels_candidates:
if "c:/users/aalsahee/downloads" in lll[0]:
i_to_del.append(lll_c)
lll_c += 1
for iii in reversed(i_to_del):
del labels_candidates[iii]
lll_c = 0
i_to_del = []
for lll in labels_candidates:
llll_c = 0
for llll in lll[0]:
if "192.168.223.128" in llll or "192.168.223.130" in llll:
i_to_del.append(lll_c)
break
llll_c += 1
lll_c += 1
for iii in reversed(i_to_del):
del labels_candidates[iii]
labels_candidates = sorted(labels_candidates, key = lambda x: (x[1]), reverse=True)
for lc in labels_candidates:
if not lc[0] in work_list:
WORK_UPDATED = True
CONVERGED = True
work_list.append(lc[0])
lc0_len = len(lc[0])
if lc0_len in list(result_labels):
if lc[1] >= 0.50:
result_labels[lc0_len].append(lc)
else:
if lc[1] >= 0.50:
result_labels[lc0_len] = [lc]
break
del work_list[0]
print("len(labels_candidates) = " + str(len(labels_candidates)))
print(labels_candidates)
#print "len(predicted_labels) = " + str(len(predicted_labels))
print(result_labels[list(result_labels)[-1]])
return result_list
def get_active_actions_statements(lines):
subjects = []
subjects_statements = []
for statement in lines:
if statement.split()[1] == "write" or statement.split()[1] == "connect":
if not statement.split()[2] in subjects:
subjects.append(statement.split()[2])
for statement in lines:
if not statement.split()[0] in subjects:
subjects.append(statement.split()[0])
for statement in lines:
if statement.split()[0] in subjects and statement.split()[2] in subjects:
if not statement in subjects_statements:
subjects_statements.append(statement)
return subjects_statements, subjects
def abstract_to_logs_sequences(lines):
global classified_words, classified_words_prediction, classified_words_proba, prob_updated
print("\nTotal statements (including passive-actions statements): " + str(len(lines)))
subjects_statements, subjects = get_active_actions_statements(lines)
print("Active-actions statements: " + str(len(subjects_statements)))
print("Possible labels: " + str(len(subjects)) + "\n")
classified_words = subjects[:]
classified_words_prediction = np.zeros(len(classified_words))
classified_words_proba = np.zeros(len(classified_words))
prob_updated = np.zeros(len(classified_words))
if not TESTING_STARTED:
result_list = suggest_ground_truth(subjects_statements, subjects)
else:
result_list = testing_suggest_ground_truth(subjects_statements, subjects)
return result_list, subjects_statements
def train():
global cvscores, kfold, CUSTOM_FIT, model, max_features, maxlen, x_train, y_train, batch_size, SHOW_STAT
history = None
early_stopping = EarlyStopping(monitor='val_loss', patience=32)
class_weight = {0: 1., 1: 50.}
callbacks_list = [keras.callbacks.EarlyStopping(monitor='acc', patience=1), keras.callbacks.ModelCheckpoint(filepath='my_model.h5', monitor='val_loss', save_best_only=True)]
if CUSTOM_FIT == 0:
if SHOW_STAT:
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=EPOCH, validation_split=0.20) #, callbacks=callbacks_list
else:
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=EPOCH)
elif CUSTOM_FIT == 2: # Cross-validation k-fold
SHOW_STAT = False
for train, test in kfold.split(x_train, y_train):
# reset the model
generate_model()
# Fit the model
model.fit(x_train[train], y_train[train], epochs=EPOCH, batch_size=batch_size, verbose=0)
# evaluate the model
scores = model.evaluate(x_train[test], y_train[test], verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)
print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))
if SHOW_STAT:
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("test_acc.png")
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("test_loss.png")
plt.show()
classified_words = []
classified_words_prediction = []
classified_words_proba = []
prob_updated = []
def predict_labels():
global prediction_counter, current_file, malicious_labels, maximum_number_of_test_iterations, user_artifact
global classified_words, classified_words_prediction, classified_words_proba, prob_updated
global CUSTOM_FIT, prediction, x_test, y_test, z_test
filter_result = []
false_positives = 0
false_negatives = 0
correctly_identified = 0
total_sequences = 0
predicted_malicious_labels = []
labels_candidates = []
prediction = None
prediction_proba = None
argmax = None
if CUSTOM_FIT == 0:
prediction = model.predict_classes(x_test)
prediction_proba = model.predict_proba(x_test)[:, 0]
prediction = prediction[:, 0].tolist()
prediction_proba = prediction_proba.tolist()
cc = 0
for sublist in z_test:
current_word = sublist[-1]
if not current_word in classified_words:
if not current_word == user_artifact:
print("ERROR!!")
print(current_word)
else:
current_word_index = classified_words.index(current_word)
if prediction[cc] == 1:
classified_words_prediction[current_word_index] = prediction[cc]
if prediction_proba[cc] > classified_words_proba[current_word_index]:
classified_words_proba[current_word_index] = prediction_proba[cc]
elif prediction[cc] == 0 and classified_words_prediction[current_word_index] == 0:
if prob_updated[cc] == 0:
prob_updated[cc] = 1
classified_words_proba[current_word_index] = prediction_proba[cc]
else:
if prediction_proba[cc] < classified_words_proba[current_word_index]:
classified_words_proba[current_word_index] = prediction_proba[cc]
cc += 1
for x in range(0, len(prediction)):
if prediction[x] == 1:
if CUSTOM_FIT == 0:
labels_candidates.append((z_test[x], prediction_proba[x]))
if prediction[x] == 0 and prediction_proba[x] > 0.5:
print(z_test[x])
return predicted_malicious_labels, labels_candidates
def prepare_dataset(lines, preprocessed_logs_file):
global current_file
global x_dataset, y_dataset, z_dataset, max_features, maxlen, malicious_labels
current_file = preprocessed_logs_file
result_list = []
print(preprocessed_logs_file + " processing...")
result_list, subjects_statements = abstract_to_logs_sequences(lines)
for s in result_list:
words = []
for w in s[1].split():
words.append(tokenized_elements[w])
if not words in x_dataset:
x_dataset.append(words)
else:
continue
z_dataset.append(s[0])
y_dataset.append(s[2])
print("done.\n")
return x_dataset, y_dataset, z_dataset, subjects_statements
def generate_malicious_sequences(lines):
global user_artifact, malicious_labels, mal_com_seq_list
longest_mal_seq = 0
for r in range(1, len(malicious_labels)+1):
for mal_combo in combinations(malicious_labels, r):
mal_combo_list = [user_artifact]
for i in mal_combo:
mal_combo_list.append(i)
mal_com_seq = construct_seq_using_labels(lines, mal_combo_list)
tokenized_mal_com_seq = tokenize_sequences(mal_com_seq)
if len(tokenized_mal_com_seq.split()) > longest_mal_seq:
longest_mal_seq = len(tokenized_mal_com_seq.split())
# print("INFO: Longer malicious training sequence has been found: " + str(longest_mal_seq))
if len(tokenized_mal_com_seq.split()) > maxlen:
print("WARNING: malicious training sequence is longer than maxlen: " + str(len(tokenized_mal_com_seq.split())))
if not tokenized_mal_com_seq in mal_com_seq_list:
mal_com_seq_list.append(tokenized_mal_com_seq)
if __name__ == '__main__':
lines = []
if DO_TRAINING:
print('Train...')
#'''
if load_nonsampling:
print("Loading nonsampled datasets ...")
nonsampling_in = open("resampling/nonsampling.json")
x_y_z_list = json.load(nonsampling_in)
x_train = x_y_z_list[0]
y_train = x_y_z_list[1]
z_train = x_y_z_list[2]
elif load_resampling:
print("Loading resampled datasets ...")
resampling_in = open("resampling/resampling.json")
x_y_z_list = json.load(resampling_in)
x_train = x_y_z_list[0]
y_train = x_y_z_list[1]
z_train = x_y_z_list[2]
elif load_undersampling:
print("Loading undersampled datasets ...")
undersampling_in = open("resampling/undersampling.json")
x_y_z_list = json.load(undersampling_in)
x_train = x_y_z_list[0]
y_train = x_y_z_list[1]
z_train = x_y_z_list[2]
else:
# nonsampling start time
start = time.time()
# gather all malicious sequences
for file in os.listdir("output"):
if file.startswith("seq_graph_training_"):
print("1- file: " + file)
load_malicious_labels(file)
malicious_labels_len = len(malicious_labels)
input_file_path = "output/" + file
input_file = open(input_file_path, "r")
lines = input_file.readlines()
for i in range(0, malicious_labels_len):
load_malicious_labels(file)
user_artifact = malicious_labels[i]
malicious_labels.remove(user_artifact)
subjects_statements, subjects = get_active_actions_statements(lines)
generate_malicious_sequences(subjects_statements)
print("user_artifact: " + user_artifact)
print("##########################################")
for file in os.listdir("output"):
if file.startswith("seq_graph_training_"):
print("2- file: " + file)
load_malicious_labels(file)
malicious_labels_len = len(malicious_labels)
input_file_path = "output/" + file
input_file = open(input_file_path, "r")
lines = input_file.readlines()
for i in range(0, malicious_labels_len):
load_malicious_labels(file)
user_artifact = malicious_labels[i]
malicious_labels.remove(user_artifact)
x_train, y_train, z_train, subjects_statements = prepare_dataset(lines, file)
print("user_artifact: " + user_artifact)
print("Total learning samples: " + str(len(x_train)))
combined = list(zip(x_train, y_train))
combined = sorted(combined, key = lambda x: x[1], reverse=True)
x_train[:], y_train[:] = zip(*combined)
tokenized_x_train = []
for x in x_train:
temp_x = ""
for xx in x:
temp_x += tokenized_x_train_elements[xx] + " "
temp_x = "".join(temp_x.split(" "))
tokenized_x_train.append(temp_x.rstrip())
print("y_train[:30]: " + str(list(y_train)[:30]))
count_y_0 = 0
count_y_1 = 0
for yval in list(y_train):
#print yval
if yval == 1:
count_y_1 += 1
if yval == 0:
count_y_0 += 1
print("zeros: " + str(count_y_0))
print("ones: " + str(count_y_1))
if not load_nonsampling:
done = time.time()
elapsed = done - start
print("Nonsampling time: " + str(elapsed))
x_y_z_list = [x_train, y_train, z_train]
if os.path.exists("resampling/nonsampling.json"):
os.remove("resampling/nonsampling.json")
nonsampling_out = open("resampling/nonsampling.json", 'w')
json.dump(x_y_z_list, nonsampling_out)
nonsampling_out.close()
print("Saved nonsampling.json file ...")
# reset for undersampling time
start = time.time()
print("Generating undersampled datasets ...")
if count_y_1 < count_y_0:
j_to_be_del = []
for x_t_i in range(count_y_1, len(y_train)):
if x_t_i in j_to_be_del:
continue
for x_t_j in range(x_t_i+1, len(y_train)):
if x_t_j in j_to_be_del:
continue
pr = fuzz.ratio(tokenized_x_train[x_t_i], tokenized_x_train[x_t_j])
if pr >= u_thresh:
j_to_be_del.append(x_t_j)
j_to_be_del.sort(reverse=True)
for j_del in j_to_be_del:
del x_train[j_del]
del y_train[j_del]
del z_train[j_del]
del tokenized_x_train[j_del]
count_y_0 = 0
count_y_1 = 0
for yval in list(y_train):
if yval == 1:
count_y_1 += 1
if yval == 0:
count_y_0 += 1
print("after undersampling the dataset: ")
print("zeros: " + str(count_y_0))
print("ones: " + str(count_y_1))
if not load_undersampling:
done = time.time()
elapsed = done - start
print("Undersampling time: " + str(elapsed))
x_y_z_list = [x_train, y_train, z_train]
if os.path.exists("resampling/undersampling.json"):
os.remove("resampling/undersampling.json")
undersampling_out = open("resampling/undersampling.json", 'w')
json.dump(x_y_z_list, undersampling_out)
undersampling_out.close()
print("Saved undersampling.json file ...")
# reset for oversampling time
start = time.time()
# over-sampling
if count_y_1 < count_y_0:
number_of_iterations = count_y_0 - count_y_1
x_train_t, y_train_t, z_train_t = x_train[:count_y_1], y_train[:count_y_1], z_train[:count_y_1]
for i_n in range(0, number_of_iterations):
i_n_mod = i_n % count_y_1
x_train = [x_train_t[i_n_mod]] + x_train
y_train = [y_train_t[i_n_mod]] + y_train
z_train = [z_train_t[i_n_mod]] + z_train
count_y_0 = 0
count_y_1 = 0
for yval in list(y_train):
#print yval
if yval == 1:
count_y_1 += 1
if yval == 0:
count_y_0 += 1
print("after oversampling the dataset: ")
print("zeros: " + str(count_y_0))
print("ones: " + str(count_y_1))
done = time.time()
elapsed = done - start
print("Overampling time: " + str(elapsed))
x_y_z_list = [x_train, y_train, z_train]
if os.path.exists("resampling/resampling.json"):
os.remove("resampling/resampling.json")
resampling_out = open("resampling/resampling.json", 'w')
json.dump(x_y_z_list, resampling_out)
resampling_out.close()
print("Saved resampling.json file ...")
exit()
combined = list(zip(x_train, y_train))
random.Random(seed).shuffle(combined)
random.shuffle(combined)
x_train[:], y_train[:] = zip(*combined)
x_train = sequence.pad_sequences(x_train, maxlen=maxlen, padding="post")
y_train = np.array(y_train)
start = time.time()
train()
done = time.time()
elapsed = done - start
print("Training time: " + str(elapsed))