This repository has been archived by the owner on Oct 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomplex.cc
61 lines (47 loc) · 1.71 KB
/
complex.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/* mkfilter -- given n, compute recurrence relation
to implement Butterworth, Bessel or Chebyshev filter of order n
A.J. Fisher, University of York <[email protected]>
September 1992 */
/* Routines for complex arithmetic */
#include <math.h>
#include "mkfilter.h"
#include "complex.h"
static complex eval(complex[], int, complex);
static double Xsqrt(double);
global complex evaluate(complex topco[], int nz, complex botco[], int np, complex z)
{ /* evaluate response, substituting for z */
return eval(topco, nz, z) / eval(botco, np, z);
}
static complex eval(complex coeffs[], int npz, complex z)
{ /* evaluate polynomial in z, substituting for z */
complex sum = complex(0.0);
for (int i = npz; i >= 0; i--) sum = (sum * z) + coeffs[i];
return sum;
}
global complex csqrt(complex x)
{ double r = hypot(x);
complex z = complex(Xsqrt(0.5 * (r + x.re)),
Xsqrt(0.5 * (r - x.re)));
if (x.im < 0.0) z.im = -z.im;
return z;
}
static double Xsqrt(double x)
{ /* because of deficiencies in hypot on Sparc, it's possible for arg of Xsqrt to be small and -ve,
which logically it can't be (since r >= |x.re|). Take it as 0. */
return (x >= 0.0) ? sqrt(x) : 0.0;
}
global complex cexp(complex z)
{ return exp(z.re) * expj(z.im);
}
global complex expj(double theta)
{ return complex(cos(theta), sin(theta));
}
global complex operator * (complex z1, complex z2)
{ return complex(z1.re*z2.re - z1.im*z2.im,
z1.re*z2.im + z1.im*z2.re);
}
global complex operator / (complex z1, complex z2)
{ double mag = (z2.re * z2.re) + (z2.im * z2.im);
return complex (((z1.re * z2.re) + (z1.im * z2.im)) / mag,
((z1.im * z2.re) - (z1.re * z2.im)) / mag);
}