-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtools.py
305 lines (249 loc) · 9.62 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import os
import math
import numpy as np
import torchvision.utils as vutils
import torch.distributed as dist
from torch.optim.lr_scheduler import LambdaLR
class DictAverageMeter(object):
def __init__(self):
self.sum_data = {}
self.avg_data = {}
self.count = 0
def update(self, new_input):
self.count += 1
if len(self.sum_data) == 0:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.sum_data[k] = v
self.avg_data[k] = v
else:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.sum_data[k] += v
self.avg_data[k] = self.sum_data[k] / self.count
def write_cam(file, cam):
f = open(file, "w")
f.write('extrinsic\n')
for i in range(0, 4):
for j in range(0, 4):
f.write(str(cam[0][i][j]) + ' ')
f.write('\n')
f.write('\n')
f.write('intrinsic\n')
for i in range(0, 3):
for j in range(0, 3):
f.write(str(cam[1][i][j]) + ' ')
f.write('\n')
f.write('\n' + str(cam[1][3][0]) + ' ' + str(cam[1][3][1]) + ' ' + str(cam[1][3][2]) + ' ' + str(cam[1][3][3]) + '\n')
f.close()
# convert a function into recursive style to handle nested dict/list/tuple variables
def make_recursive_func(func):
def wrapper(vars):
if isinstance(vars, list):
return [wrapper(x) for x in vars]
elif isinstance(vars, tuple):
return tuple([wrapper(x) for x in vars])
elif isinstance(vars, dict):
return {k: wrapper(v) for k, v in vars.items()}
else:
return func(vars)
return wrapper
def save_scalars(logger, mode, scalar_dict, global_step):
scalar_dict = tensor2float(scalar_dict)
for key, value in scalar_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_scalar(name, value, global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_scalar(name, value[idx], global_step)
def save_images(logger, mode, images_dict, global_step):
images_dict = tensor2numpy(images_dict)
def preprocess(name, img):
if not (len(img.shape) == 3 or len(img.shape) == 4):
raise NotImplementedError("invalid img shape {}:{} in save_images".format(name, img.shape))
if len(img.shape) == 3:
img = img[:, np.newaxis, :, :]
img = torch.from_numpy(img[:1])
return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True)
for key, value in images_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_image(name, preprocess(name, value), global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_image(name, preprocess(name, value[idx]), global_step)
@make_recursive_func
def tensor2numpy(vars):
if isinstance(vars, np.ndarray):
return vars
elif isinstance(vars, torch.Tensor):
return vars.detach().cpu().numpy().copy()
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
@make_recursive_func
def tensor2float(vars):
if isinstance(vars, float):
return vars
elif isinstance(vars, torch.Tensor):
return vars.data.item()
else:
raise NotImplementedError("invalid input type {} for tensor2float".format(type(vars)))
def reduce_scalar_outputs(scalar_outputs):
world_size = get_world_size()
if world_size < 2:
return scalar_outputs
with torch.no_grad():
names = []
scalars = []
for k in sorted(scalar_outputs.keys()):
names.append(k)
scalars.append(scalar_outputs[k])
scalars = torch.stack(scalars, dim=0)
dist.reduce(scalars, dst=0)
if dist.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
scalars /= world_size
reduced_scalars = {k: v for k, v in zip(names, scalars)}
return reduced_scalars
@make_recursive_func
def tocuda(vars):
if isinstance(vars, torch.Tensor):
return vars.to(torch.device("cuda"))
elif isinstance(vars, str):
return vars
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
# a wrapper to compute metrics for each image individually
def compute_metrics_for_each_image(metric_func):
def wrapper(depth_est, depth_gt, mask, *args):
batch_size = depth_gt.shape[0]
results = []
# compute result one by one
for idx in range(batch_size):
ret = metric_func(depth_est[idx], depth_gt[idx], mask[idx], *args)
results.append(ret)
return torch.stack(results).mean()
return wrapper
@torch.no_grad()
@compute_metrics_for_each_image
def AbsDepthError_metrics(depth_est, depth_gt, mask, thres=None):
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
error = (depth_est - depth_gt).abs()
if thres is not None:
error = error[(error >= float(thres[0])) & (error <= float(thres[1]))]
if error.shape[0] == 0:
return torch.tensor(0, device=error.device, dtype=error.dtype)
return torch.mean(error)
@torch.no_grad()
@compute_metrics_for_each_image
def Thres_metrics(depth_est, depth_gt, mask, thres):
assert isinstance(thres, (int, float))
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
errors = torch.abs(depth_est - depth_gt)
err_mask = errors > thres
return torch.mean(err_mask.float())
def generate_pointcloud(rgb, depth, ply_file, intr, scale=1.0):
"""
Generate a colored point cloud in PLY format from a color and a depth image.
Input:
rgb_file -- filename of color image
depth_file -- filename of depth image
ply_file -- filename of ply file
"""
fx, fy, cx, cy = intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2]
points = []
for v in range(rgb.shape[0]):
for u in range(rgb.shape[1]):
color = rgb[v, u] # rgb.getpixel((u, v))
Z = depth[v, u] / scale
if Z == 0: continue
X = (u - cx) * Z / fx
Y = (v - cy) * Z / fy
points.append("%f %f %f %d %d %d 0\n" % (X, Y, Z, color[0], color[1], color[2]))
file = open(ply_file, "w")
file.write('''ply
format ascii 1.0
element vertex %d
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property uchar alpha
end_header
%s
''' % (len(points), "".join(points)))
file.close()
print("save ply, fx:{}, fy:{}, cx:{}, cy:{}".format(fx, fy, cx, cy))
def get_schedular(optimizer, args):
warmup = args.warmup
milestones = np.array(args.milestones)
decay = args.lr_decay
if args.scheduler == "steplr":
lambda_func = lambda step: 1 / 3 * (1 - step / warmup) + step / warmup if step < warmup \
else (decay ** (milestones <= step).sum())
elif args.scheduler == "cosinelr":
max_lr = args.lr
min_lr = max_lr * (args.lr_decay ** 3)
T_max = args.epochs
lambda_func = lambda step: 1 / 3 * (1 - step / warmup) + step / warmup if step < warmup else \
(min_lr + 0.5 * (max_lr - min_lr) * (1.0 + math.cos((step - warmup) / (T_max - warmup) * math.pi))) / max_lr
scheduler = LambdaLR(optimizer, lambda_func)
return scheduler
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
setup_for_distributed(args.rank == 0)