-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathyolo_test.py
163 lines (131 loc) · 5.42 KB
/
yolo_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import pandas as pd
import numpy as np
import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
import cv2
from trt_utils import *
from tensorflow.keras.models import load_model
from hand_detector.yolo.darknet import model as yolo_model
from hand_detector.yolo.generator import load_test_images
from hand_detector.yolo.preprocess.yolo_flag import Flag
from metrics import iou, get_stat
f = Flag()
# TEST DATASET LABELS
df_test = pd.read_csv('custom_dataset/test_labels.csv')
def get_test_image(image_name, directory = 'custom_dataset/'):
image = cv2.imread(directory + 'test/' + image_name, cv2.COLOR_BGR2RGB)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (f.target_size, f.target_size))
processed_image = np.expand_dims(image, axis=0) / 255.0
return processed_image
def get_test_bbox(image_name):
label = df_test[df_test.filename == image_name[:-4]].iloc[0][1:].tolist()
bbox = [float(element) * f.target_size for element in label]
bbox = tuple(bbox)
if bbox[0] == 0 and bbox[1] == 0 and bbox[2] == 0 and bbox[3] == 0:
return None
return bbox
def convert_anchor_to_bbox(yolo_out, threshold = 0.8, width=224, height=224):
grid_pred = yolo_out[:, :, 0]
i, j = np.squeeze(np.where(grid_pred == np.amax(grid_pred)))
try:
if i.shape[0] > 1 :
i = i[0]
j = j[0]
except:
pass
if grid_pred[i, j] >= threshold:
bbox = yolo_out[i, j, 1:]
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
# size conversion
x1 = float(x1 * width)
y1 = float(y1 * height)
x2 = float(x2 * width)
y2 = float(y2 * height)
return (x1, y1, x2, y2)
else:
return None
# def show_result(preprocess, pr_bbox, gt_bbox, tmp_iou):
# image = preprocess.astype(np.float32)
# if pr_bbox is not None:
# x1, y1, x2, y2 = int(pr_bbox[0]), int(pr_bbox[1]), int(pr_bbox[2]), int(pr_bbox[3])
# image = cv2.rectangle(image, (x1, y1), (x2, y2), (0,0,0), 2)
# if gt_bbox is not None:
# x1, y1, x2, y2 = int(gt_bbox[0]), int(gt_bbox[1]), int(gt_bbox[2]), int(gt_bbox[3])
# image = cv2.rectangle(image, (x1, y1), (x2, y2), (0,255,0), 2)
#
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# cv2.putText(image, '{:.2f}'.format(tmp_iou), (25,25), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,255,0),2,cv2.LINE_AA)
# cv2.imshow('test_image', image)
def run_test(weights = 'weights/yolo.h5', trt_engine = 'weights/engines/model_trained_yolo.fp16.engine', iou_threshold = 0.5, confidence_threshold = 0.8, trt = False, show = True):
if trt:
engine = load_engine(trt_engine)
inputs, outputs, bindings, stream = allocate_buffers(engine)
context = engine.create_execution_context()
else:
# create the model
model = yolo_model()
model.load_weights(weights)
# model.summary()
# test
list_test_images = load_test_images()
test_set_size = len(list_test_images)
print('Test_set_size : ', test_set_size)
iou_list = []
pr_list = []
gt_list = []
for i in range(test_set_size):
print(i)
image_name = list_test_images[i]
preprocess = get_test_image(image_name)
np.copyto(inputs[0].host, preprocess.ravel())
if trt:
yolo_out = np.array([do_inference(context,
bindings=bindings,
inputs=inputs,
outputs=outputs,
stream=stream)
]).reshape((1, 7, 7, 5))
yolo_output = yolo_out[0]
else:
yolo_output = model.predict(preprocess)[0]
pr_bbox = convert_anchor_to_bbox(yolo_output, threshold = confidence_threshold, width=f.target_size, height=f.target_size)
gt_bbox = get_test_bbox(image_name)
if gt_bbox is None and pr_bbox is None:
pr_list.append(0)
gt_list.append(0)
tmp_iou = -1
elif gt_bbox is None and pr_bbox is not None:
pr_list.append(1)
gt_list.append(0)
iou_list.append(0)
tmp_iou = 0
elif gt_bbox is not None and pr_bbox is None:
pr_list.append(0)
gt_list.append(1)
iou_list.append(0)
tmp_iou = 0
elif gt_bbox is not None and pr_bbox is not None:
gt_list.append(1)
tmp_iou = iou(gt_bbox, pr_bbox)
if tmp_iou > iou_threshold:
pr_list.append(1)
else:
pr_list.append(0)
iou_list.append(tmp_iou)
#if show:
# show_result(preprocess[0], pr_bbox, gt_bbox, tmp_iou)
# if cv2.waitKey(60) & 0xff == 27:
# cv2.destroyAllWindows()
# break
avg_iou = sum(iou_list)/len(iou_list)
acc, recall, precision, _ = get_stat(gt_list, pr_list)
print('Avg iou : {:.2f}'.format(avg_iou*100))
print('Accuracy : {:.2f} %'.format(acc*100))
print('Recall : {:.2f} %'.format(recall*100))
print('Precision : {:.2f} %'.format(precision*100))
if __name__ == '__main__':
print('\n\n --------- yolo -----------')
run_test(weights = 'weights/yolo.h5', trt_engine = 'weights/engines/model_trained_yolo.fp32.engine', iou_threshold = 0.5, confidence_threshold = 0.8, trt = True)