-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
424 lines (271 loc) · 9.73 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from func import *
# References :
# * Word embeddings - https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
# * 2D CNN when we have 3D features, such as RGB -
# https://missinglink.ai/guides/keras/keras-conv1d-working-1d-convolutional-neural-networks-keras/
# * Pooling layers reduce the size of the representation to speed up the computation and make features robust
# * Add a "flatten" layer which prepares a vector for the fulpython ly connected layers, for example using Sequential.add(Flatten()) -
# https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/
# * Dense layer - A fully connected layer also known as the dense layer, in which the results of the convolutional layers are fed through one or more neural layers to generate a prediction
# * Activation functions - https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
# ## Vanilla RNN
# * Why use embedding layer before RNN/ LSTM layer -
# https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12
# * Learning curves - https://www.dataquest.io/blog/learning-curves-machine-learning/
#
#
#
#
# In[58]:
def define_model1(vocab_size, max_length):
model1 = Sequential()
model1.add(Embedding(vocab_size,100, input_length=max_length))
model1.add(SimpleRNN(100))
model1.add(Dense(10, activation='softmax'))
model1.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy'])
# summarize defined model
model1.summary()
#plot_model(model1, to_file='model_1.png', show_shapes=True)
return model1
# In[59]:
model1 = define_model1(vocab_size, max_length)
# In[60]:
history1 = model1.fit(X_train, y_train, epochs=10, verbose=1,validation_data=(X_test,y_test),callbacks=callbacks)#,callbacks=callbacks)
# In[61]:
# Learning curves
# acc = history1.history['accuracy']
# val_acc = history1.history['val_accuracy']
# loss=history1.history['loss']
# val_loss=history1.history['val_loss']
# plt.figure(figsize=(16,8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.xlabel("epochs")
# plt.ylabel("accuracy")
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.xlabel("epochs")
# plt.ylabel("loss")
# plt.show()
# ## CNN
# In[62]:
def define_model2(vocab_size, max_length):
model2 = Sequential()
model2.add(Embedding(vocab_size,300, input_length=max_length))
model2.add(Conv1D(filters=32, kernel_size=2, activation='relu'))
model2.add(MaxPooling1D(pool_size = 4))
model2.add(Flatten())
model2.add(Dense(32, activation='relu'))
model2.add(Dense(10, activation='softmax'))
model2.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy'])
# summarize defined model
model2.summary()
return model2
# In[63]:
model2 = define_model2(vocab_size, max_length)
# In[64]:
history = model2.fit(X_train, y_train, epochs=15, verbose=1,validation_data=(X_test,y_test),callbacks=callbacks)
# In[65]:
# Learning curves
# acc = history.history['accuracy']
# val_acc = history.history['val_accuracy']
# loss=history.history['loss']
# val_loss=history.history['val_loss']
# plt.figure(figsize=(16,8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.xlabel("epochs")
# plt.ylabel("accuracy")
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.xlabel("epochs")
# plt.ylabel("loss")
# plt.show()
# ## LSTM
# In[66]:
def define_model3(vocab_size, max_length):
model3 = Sequential()
model3.add(Embedding(vocab_size,300, input_length=max_length))
model3.add(LSTM(500))
model3.add(Dense(10, activation='softmax'))
model3.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy'])
# summarize defined model
model3.summary()
return model3
# In[67]:
model3 = define_model3(vocab_size, max_length)
# In[68]:
history = model3.fit(X_train, y_train, epochs=15, verbose=1,validation_data=(X_test,y_test))
# In[69]:
# Learning curves
# acc = history.history['accuracy']
# val_acc = history.history['val_accuracy']
# loss=history.history['loss']
# val_loss=history.history['val_loss']
# plt.figure(figsize=(16,8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.xlabel("epochs")
# plt.ylabel("accuracy")
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.xlabel("epochs")
# plt.ylabel("loss")
# plt.show()
# ## GRU
# In[70]:
def define_model3(vocab_size, max_length):
model3 = Sequential()
model3.add(Embedding(vocab_size,300, input_length=max_length))
model3.add(GRU(500))
model3.add(Dense(10, activation='softmax'))
model3.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy'])
# summarize defined model
model3.summary()
return model3
# In[71]:
model3 = define_model3(vocab_size, max_length)
# In[72]:
history = model3.fit(X_train, y_train, epochs=15, verbose=1,validation_data=(X_test,y_test))
# In[73]:
# Learning curves
# acc = history.history['accuracy']
# val_acc = history.history['val_accuracy']
# loss=history.history['loss']
# val_loss=history.history['val_loss']
# plt.figure(figsize=(16,8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.xlabel("epochs")
# plt.ylabel("accuracy")
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.xlabel("epochs")
# plt.ylabel("loss")
# plt.show()
# ## BiLSTM
#
# In[74]:
def define_model3(vocab_size, max_length):
model3 = Sequential()
model3.add(Embedding(vocab_size,300, input_length=max_length))
model3.add(Bidirectional(LSTM(500)))
model3.add(Dense(10, activation='softmax'))
model3.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy'])
# summarize defined model
model3.summary()
return model3
# In[75]:
model3 = define_model3(vocab_size, max_length)
# In[76]:
history = model3.fit(X_train, y_train, epochs=10, verbose=1,validation_data=(X_test,y_test))
# In[77]:
# Learning curves
# acc = history.history['accuracy']
# val_acc = history.history['val_accuracy']
# loss=history.history['loss']
# val_loss=history.history['val_loss']
# plt.figure(figsize=(16,8))
# plt.subplot(1, 2, 1)
# plt.plot(acc, label='Training Accuracy')
# plt.plot(val_acc, label='Validation Accuracy')
# plt.legend(loc='lower right')
# plt.title('Training and Validation Accuracy')
# plt.xlabel("epochs")
# plt.ylabel("accuracy")
# plt.subplot(1, 2, 2)
# plt.plot(loss, label='Training Loss')
# plt.plot(val_loss, label='Validation Loss')
# plt.legend(loc='upper right')
# plt.title('Training and Validation Loss')
# plt.xlabel("epochs")
# plt.ylabel("loss")
# plt.show()
# Future scope -
# * embedding layer : GloVe
# * cross validation for testing
# * grid search CV
# ## Predictions
# In[84]:
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
# In[85]:
def get_text(str_text):
# print(str_text)
input_text = [str_text]
df_input = pd.DataFrame(input_text,columns=['questions'])
df_input
return df_input
from tensorflow.keras.models import load_model
model = model3
tokenizer_t = joblib.load('tokenizer_t.pkl')
vocab = joblib.load('vocab.pkl')
# In[87]:
def tokenizer(entry):
tokens = entry.split()
re_punc = re.compile('[%s]' % re.escape(string.punctuation))
tokens = [re_punc.sub('', w) for w in tokens]
tokens = [word for word in tokens if word.isalpha()]
tokens = [lemmatizer.lemmatize(w.lower()) for w in tokens]
# stop_words = set(stopwords.words('english'))
# tokens = [w for w in tokens if not w in stop_words]
tokens = [word.lower() for word in tokens if len(word) > 1]
return tokens
# In[88]:
def remove_stop_words_for_input(tokenizer,df,feature):
doc_without_stopwords = []
entry = df[feature][0]
tokens = tokenizer(entry)
doc_without_stopwords.append(' '.join(tokens))
df[feature] = doc_without_stopwords
return df
# In[89]:
def encode_input_text(tokenizer_t,df,feature):
t = tokenizer_t
entry = [df[feature][0]]
encoded = t.texts_to_sequences(entry)
padded = pad_sequences(encoded, maxlen=10, padding='post')
return padded
# In[90]:
def get_pred(model,encoded_input):
pred = np.argmax(model.predict(encoded_input))
return pred
# In[91]:
def bot_precausion(df_input,pred):
words = df_input.questions[0].split()
if len([w for w in words if w in vocab])==0 :
pred = 1
return pred
# In[92]:
def get_response(df2,pred):
upper_bound = df2.groupby('labels').get_group(pred).shape[0]
r = np.random.randint(0,upper_bound)
responses = list(df2.groupby('labels').get_group(pred).response)
return responses[r]
# In[93]:
def bot_response(response,):
print(response)