-
Notifications
You must be signed in to change notification settings - Fork 7
/
app.py
369 lines (298 loc) · 22.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from openai import OpenAI, OpenAIError
import streamlit as st
from dotenv import load_dotenv
import os
import json
import shelve
import unicodedata
from fpdf import FPDF # type: ignore
import base64
# from prompts.coursify_prompt import COURSIFY_PROMPT
from prompts.tabler_prompt import TABLER_PROMPT
from prompts.dictator_prompt import DICTATOR_PROMPT
from prompts.quizzy_prompt import QUIZZY_PROMPT
def generate_pdf(content, filename):
content = unicodedata.normalize('NFKD', content).encode('ascii', 'ignore').decode('ascii')
pdf = FPDF()
pdf.add_page()
pdf.set_font('Arial', 'B', 12)
pdf.multi_cell(0, 10, content)
pdf.output(filename, 'F')
return pdf
# Customizing the page configuration
st.set_page_config(
page_title="Automated Course Content Generator",
page_icon=":robot:",
layout="wide",
initial_sidebar_state="collapsed",
)
load_dotenv()
st.title("Automated Course Content Generator 🤖")
USER_AVATAR = "👤"
BOT_AVATAR = "🤖"
try:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise OpenAIError("Please provide OPENAI_API_KEY")
client = OpenAI(api_key=api_key)
except OpenAIError as e:
st.error(str(e))
# Ensure openai_model is initialized in session state
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
# Load chat history from shelve file
def load_chat_history():
with shelve.open("chat_history") as db:
return db.get("messages", [])
# Save chat history to shelve file
def save_chat_history(messages):
with shelve.open("chat_history") as db:
db["messages"] = messages
# Initialize or load chat history
if "messages" not in st.session_state:
st.session_state.messages = load_chat_history()
# Sidebar with a button to delete chat history
with st.sidebar:
if st.button("Delete Chat History"):
st.session_state.messages = []
save_chat_history([])
# Example of using columns for advanced layouts
col1, col2 = st.columns(2)
col1, col_divider, col2 = st.columns([3.0,0.1,7.0])
with col1:
st.header("Course Details 📋")
# Interactive widgets for course details
course_name = st.text_input("Course Name")
target_audience_edu_level = st.selectbox(
"Target Audience Edu Level",
["Primary", "High School", "Diploma", "Bachelors", "Masters"]
)
difficulty_level = st.radio(
"Course Difficulty Level",
["Beginner", "Intermediate", "Advanced"]
)
num_modules = st.slider(
"No. of Modules",
min_value=1, max_value=15
)
course_duration = st.text_input("Course Duration")
course_credit = st.text_input("Course Credit")
# Save widget states in session_state
st.session_state.course_name = course_name
st.session_state.target_audience_edu_level = target_audience_edu_level
st.session_state.difficulty_level = difficulty_level
st.session_state.num_modules = num_modules
st.session_state.course_duration = course_duration
st.session_state.course_credit = course_credit
button1, button2 = st.columns([1, 0.8])
with button1:
generate_button = st.button("Generate Course Outline", help="Click me to generate course outline!😁")
with button2:
if "pdf" in st.session_state:
new_course_button = st.button("Start a New Course", help="Click me to start a new course!💡")
if new_course_button:
st.session_state.course_name = ""
st.session_state.target_audience_edu_level = ""
st.session_state.difficulty_level = ""
st.session_state.num_modules = 1
st.session_state.course_duration = ""
st.session_state.course_credit = ""
st.session_state.pdf = False
st.experimental_rerun()
with col2:
st.header("Generated Course Content 📝")
# Display the generated content here
if generate_button and "pdf" not in st.session_state:
# Include user selections in the message history
user_selections = f"Course Name: {course_name}\nTarget Audience Edu Level: {target_audience_edu_level}\nDifficulty Level: {difficulty_level}\nNo. of Modules: {num_modules}\nCourse Duration: {course_duration}\nCourse Credit: {course_credit}"
st.session_state.messages.append({"role": "user", "content": user_selections})
PROMPT=f"You are Prompter, the world's best Prompt Engineer. I am using another GenAI tool, Tabler, that helps in generating a course outline for trainers and professionals for the automated course content generation for their courses. Your job is to strictly use the only following inputs: 1) Course Name: {course_name} 2) Target Audience Edu Level: {target_audience_edu_level} 3) Course Difficulty Level: {difficulty_level} 4) No. of Modules: {num_modules} 5) Course Duration: {course_duration} 6) Course Credit: {course_credit}. to generate a prompt for Tabler so that it can produce the best possible outputs. The prompt that you generate must be comprehensive and strictly follow the above given inputs and also mention the given inputs in the prompt you generate. Moreover, it is your job to also identify if the course name is appropriate and not gibberish."
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": PROMPT},
]
)
generated_prompt = response.choices[0].message.content
# st.success("Prompt generated successfully!")
# st.write(generated_prompt)
with st.spinner("Generating course outline..."):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": TABLER_PROMPT},
{"role": "user", "content": generated_prompt},
]
)
Course_outline = response.choices[0].message.content
st.success("Course outline generated successfully!")
# with st.expander("Course Outline"):
# st.write(Course_outline)
st.session_state['course_outline'] = Course_outline
st.session_state['buttons_visible'] = True
if 'course_outline' in st.session_state and "pdf" not in st.session_state:
with st.expander("Course Outline"):
st.write(st.session_state['course_outline'])
if 'buttons_visible' in st.session_state and st.session_state['buttons_visible']:
button1, button2 = st.columns([1, 2])
with button1:
complete_course_button = st.button("Looks cool. Generate complete course!", help="Click me to generate complete course!😍")
with button2:
modifications_button = st.button("Wai wait..!, I need to make some modifications", help="Click me to modify the course outline!🧐")
# Handle button actions
if complete_course_button:
st.session_state['complete_course'] = True
st.session_state['modifications'] = False
elif modifications_button:
st.session_state['modifications'] = True
st.session_state['complete_course'] = False
if 'complete_course' in st.session_state and st.session_state['complete_course']:
with st.spinner("Generating complete course..."):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": DICTATOR_PROMPT},
{"role": "user", "content": st.session_state['course_outline']},
]
)
Dict = response.choices[0].message.content
# st.success("DICTator is here!")
# st.write(Dict)
module_lessons = json.loads(Dict)
# st.write(module_lessons)
for module_name in module_lessons:
module_content = ""
for lesson_name in module_lessons[module_name]:
module_lesson_prompt =f"""You are Coursify, an AI assistant specialized in generating high-quality educational content for online courses. Your knowledge spans a wide range of academic and professional domains, allowing you to create in-depth and engaging material on any given topic. For this task, you will be generating detailed content for the lesson '{lesson_name}' which is part of the module '{module_name}' in the course '{course_name}'. Your goal is to provide a comprehensive and learner-friendly exploration of this specific topic, covering all relevant concepts, theories, and practical applications, as if you were an experienced instructor teaching the material.
To ensure the content is effective and aligns with best practices in instructional design, you will follow Bloom's Taxonomy approach. This means structuring the material in a way that progressively builds learners' knowledge and skills, starting from foundational concepts and working up to higher-order thinking and application. Your response should be verbose, with in-depth explanations, multiple examples, and a conversational tone that mimics an instructor's teaching style.
The structure of your response should include (but NOT limited to) the following elements:
1) Introduce the topic and provide context, explaining its relevance and importance within the broader course and domain, as an instructor would do in a classroom setting.
2) Define and clarify key terms, concepts, and principles related to the topic, with detailed explanations, analogies, and examples to aid comprehension.
3) Present thorough, step-by-step explanations of the concepts, using real-world scenarios, visual aids, and analogies to ensure learners grasp the material.
4) Discuss real-world applications, case studies, or scenarios that demonstrate the practical implications of the topic, drawing from industry best practices and authoritative sources.
5) Incorporate interactive elements, such as reflective questions, exercises, or problem-solving activities, to engage learners and reinforce their understanding, as an instructor would do in a classroom.
6) Seamlessly integrate relevant tangential concepts or background information as needed to provide a well-rounded learning experience, ensuring learners have the necessary foundational knowledge.
7) Maintain a conversational, approachable tone while ensuring accuracy and depth of content, as if you were an experienced instructor teaching the material.
Remember, the goal is to create a comprehensive and self-contained learning resource on the specified topic, with the level of detail and instructional quality that one would expect from an expert instructor. Your output should be formatted using Markdown for clarity and easy integration into course platforms.
Note: Add a blank line at the end of the course content.
Make sure the content generated is easily convertible to a sensible using HTML Tags.
"""
with st.spinner(f"Generating content for {module_name}, {lesson_name}"):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": module_lesson_prompt},
# {"role": "user", "content": st.session_state['course_outline']},
]
)
complete_course = response.choices[0].message.content
st.success(f"Generated content for {module_name}, {lesson_name}")
with st.expander("Click to view!"):
st.write(complete_course)
module_content += complete_course + "\n"*2
quizzy_prompt_final = QUIZZY_PROMPT + module_content
with st.spinner(f"Generating quiz questions for {module_name}"):
res = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": quizzy_prompt_final},
# {"role": "user", "content": st.session_state['course_outline']},
]
)
quiz_questions = res.choices[0].message.content
st.success(f"Quiz time!! Generated quiz questions for {module_name}")
with st.expander("Click to view!"):
st.write(quiz_questions)
if "pdf" not in st.session_state:
complete_course_content = module_content + "\n\n" + quiz_questions
st.session_state.pdf = generate_pdf(complete_course_content, "course.pdf")
b64 = base64.b64encode(st.session_state.pdf.output(dest="S").encode('latin1')).decode()
st.success("Your PDF file is ready!")
button_label = "Download PDF"
st.download_button(label=button_label, data=b64, file_name="course.pdf", mime="application/pdf", key="download_pdf_button")
break
elif 'modifications' in st.session_state:
modifications = st.text_input("Please enter the modifications you'd like to make:")
if modifications:
st.session_state.modifications = modifications
Mod = f""" I have provided you with the "course outline" and "modifications". Your task is to modify the existing course outline using modifications provided, and give complete modified course outline as the output.
modifications:
{st.session_state.modifications}
course outline:
{st.session_state['course_outline']}"""
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": TABLER_PROMPT},
{"role": "user", "content": Mod},
]
)
Mod_CO = response.choices[0].message.content
with st.spinner("Generating complete course with the specified modifications..."):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": DICTATOR_PROMPT},
{"role": "user", "content": Mod_CO},
]
)
Dict = response.choices[0].message.content
# st.success("DICTator is here!")
# st.write(Dictt)
module_lessons = json.loads(Dict)
# st.write(module_lessons)
for module_name in module_lessons:
module_content = ""
for lesson_name in module_lessons[module_name]:
module_lesson_prompt =f"""You are Coursify, an AI assistant specialized in generating high-quality educational content for online courses. Your knowledge spans a wide range of academic and professional domains, allowing you to create in-depth and engaging material on any given topic. For this task, you will be generating detailed content for the lesson '{lesson_name}' which is part of the module '{module_name}' in the course '{course_name}'. Your goal is to provide a comprehensive and learner-friendly exploration of this specific topic, covering all relevant concepts, theories, and practical applications, as if you were an experienced instructor teaching the material.
To ensure the content is effective and aligns with best practices in instructional design, you will follow Bloom's Taxonomy approach. This means structuring the material in a way that progressively builds learners' knowledge and skills, starting from foundational concepts and working up to higher-order thinking and application. Your response should be verbose, with in-depth explanations, multiple examples, and a conversational tone that mimics an instructor's teaching style.
The structure of your response should include (but NOT limited to) the following elements:
1) Introduce the topic and provide context, explaining its relevance and importance within the broader course and domain, as an instructor would do in a classroom setting.
2) Define and clarify key terms, concepts, and principles related to the topic, with detailed explanations, analogies, and examples to aid comprehension.
3) Present thorough, step-by-step explanations of the concepts, using real-world scenarios, visual aids, and analogies to ensure learners grasp the material.
4) Discuss real-world applications, case studies, or scenarios that demonstrate the practical implications of the topic, drawing from industry best practices and authoritative sources.
5) Incorporate interactive elements, such as reflective questions, exercises, or problem-solving activities, to engage learners and reinforce their understanding, as an instructor would do in a classroom.
6) Seamlessly integrate relevant tangential concepts or background information as needed to provide a well-rounded learning experience, ensuring learners have the necessary foundational knowledge.
7) Maintain a conversational, approachable tone while ensuring accuracy and depth of content, as if you were an experienced instructor teaching the material.
Remember, the goal is to create a comprehensive and self-contained learning resource on the specified topic, with the level of detail and instructional quality that one would expect from an expert instructor. Your output should be formatted using Markdown for clarity and easy integration into course platforms.
Note: Add a blank line at the end of the course content.
Make sure the content generated is easily convertible to a sensible using HTML Tags.
"""
with st.spinner(f"Generating content for {module_name}, {lesson_name}"):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": module_lesson_prompt},
# {"role": "user", "content": st.session_state['course_outline']},
]
)
complete_course = response.choices[0].message.content
st.success(f"Generated content for {module_name}, {lesson_name}")
with st.expander("Click to view!"):
st.write(complete_course)
module_content += complete_course + "\n"*2
quizzy_prompt_final = QUIZZY_PROMPT + module_content
with st.spinner(f"Generating quiz questions for {module_name}"):
res = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": quizzy_prompt_final},
# {"role": "user", "content": st.session_state['course_outline']},
]
)
quiz_questions = res.choices[0].message.content
st.success(f"Quiz time!! Generated quiz questions for {module_name}")
with st.expander("Click to view!"):
st.write(quiz_questions)
if "pdf" not in st.session_state:
complete_course_content = module_content + "\n\n" + quiz_questions
st.session_state.pdf = generate_pdf(complete_course_content, "course.pdf")
b64 = base64.b64encode(st.session_state.pdf.output(dest="S").encode('latin1')).decode()
st.success("Your PDF file is ready!")
button_label = "Download PDF"
st.download_button(label=button_label, data=b64, file_name="course.pdf", mime="application/pdf", key="download_pdf_button", help="Click me to download PDF 😌")
break
else:
st.write("Your generated content will appear here.")
# Save chat history after each interaction
save_chat_history(st.session_state.messages)