-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathQuick-select.cpp
129 lines (109 loc) · 3.69 KB
/
Quick-select.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// quickselect is a selection algorithm to find the kth smallest element in an
// unordered list.It is related to the quicksort sorting
// algorithm.Like quicksort,
// it was developed by Tony Hoare, and thus is also known as Hoare's
// selection algorithm.[1] Like quicksort, it is efficient in practice and
// has good average-case performance, but has poor worst-case performance.
// Quickselect and its variants are the selection algorithms most often used
// in efficient real-world implementations
// kthSmallest(arr[0..n-1], k)
// 1) Divide arr[] into ⌈n/5⌉ groups where size of each group is 5 except
// possibly the last group which may have less than 5 elements.
// 2) Sort the above created ⌈n/5⌉ groups and find median of all groups. Create
// an auxiliary array ‘median[]’ and store medians of all ⌈n/5⌉ groups in this
// median array.
// // Recursively call this method to find median of median[0..⌈n/5⌉-1]
// 3) medOfMed = kthSmallest(median[0..⌈n/5⌉-1], ⌈n/10⌉)
// 4) Partition arr[] around medOfMed and obtain its position.
// pos = partition(arr, n, medOfMed)
// 5) If pos == k return medOfMed
// 6) If pos > k return kthSmallest(arr[l..pos-1], k)
// 7) If pos < k return kthSmallest(arr[pos+1..r], k-pos+l-1)
// C++ implementation of worst case linear time algorithm
// to find k'th smallest element
#include<iostream>
#include<algorithm>
#include<climits>
using namespace std;
int partition(int arr[], int l, int r, int k);
// A simple function to find median of arr[]. This is called
// only for an array of size 5 in this program.
int findMedian(int arr[], int n)
{
sort(arr, arr+n); // Sort the array
return arr[n/2]; // Return middle element
}
// Returns k'th smallest element in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r-l+1; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5, calculate median
// of every group and store it in median[] array.
int i, median[(n+4)/5]; // There will be floor((n+4)/5) groups;
for (i=0; i<n/5; i++)
median[i] = findMedian(arr+l+i*5, 5);
if (i*5 < n) //For last group with less than 5 elements
{
median[i] = findMedian(arr+l+i*5, n%5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
int medOfMed = (i == 1)? median[i-1]:
kthSmallest(median, 0, i-1, i/2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = partition(arr, l, r, medOfMed);
// If position is same as k
if (pos-l == k-1)
return arr[pos];
if (pos-l > k-1) // If position is more, recur for left
return kthSmallest(arr, l, pos-1, k);
// Else recur for right subarray
return kthSmallest(arr, pos+1, r, k-pos+l-1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// It searches for x in arr[l..r], and partitions the array
// around x.
int partition(int arr[], int l, int r, int x)
{
// Search for x in arr[l..r] and move it to end
int i;
for (i=l; i<r; i++)
if (arr[i] == x)
break;
swap(&arr[i], &arr[r]);
// Standard partition algorithm
i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j] <= x)
{
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
int main()
{
int arr[] = {12, 3, 5, 7, 4, 19, 26};
int n = sizeof(arr)/sizeof(arr[0]), k = 3;
cout << "K'th smallest element is "
<< kthSmallest(arr, 0, n-1, k);
return 0;
}