-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTSP-branch-and-bound.cpp
188 lines (165 loc) · 5.51 KB
/
TSP-branch-and-bound.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
* @file travelling-salesman-problem.cpp
* @author prakash ([email protected])
* @brief travelling-salesman-problem using branch and bound
* @version 0.1
* @date 2021-08-01
*
* @copyright Copyright (c) 2021
*
*/
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
class TSP {
public:
int n;
int final_res = INT_MAX;
vector<int> final_path;
vector<bool> visited;
vector<vector<int>> graph;
TSP(vector<vector<int>> input_, int n_) {
graph = input_;
n = n_;
visited.resize(n, false);
final_path.resize(n + 1, 0);
}
// implement travelling salesman problem
void solve(int p) {
int curr_path[n + 1];
// Calculate initial lower bound for the root node
// using the formula 1/2 * (sum of first min +
// second min) for all edges.
// Also initialize the curr_path and visited array
int curr_bound = 0;
memset(curr_path, -1, sizeof(curr_path));
visited.resize(sizeof(curr_path), false);
// Compute initial bound
for (int i = 0; i < n; i++)
curr_bound += (firstMin(graph, i) + secondMin(graph, i));
// Rounding off the lower bound to an integer
curr_bound = (curr_bound & 1) ? curr_bound / 2 + 1 : curr_bound / 2;
// We start at vertex 1 so the first vertex
// in curr_path[] is 0
visited[0] = true;
curr_path[0] = 0;
TSP_Recursive(graph, curr_bound, 0, 1, curr_path);
}
// function that takes as arguments:
// curr_bound -> lower bound of the root node
// curr_weight-> stores the weight of the path so far
// level-> current level while moving in the search
// space tree
// curr_path[] -> where the solution is being stored which
// would later be copied to final_path[]
void TSP_Recursive(vector<vector<int>> adj, int curr_bound, int curr_weight,
int level, int curr_path[]) {
// base case is when we have reached level N which
// means we have covered all the nodes once
if (level == n) {
// check if there is an edge from last vertex in
// path back to the first vertex
if (adj[curr_path[level - 1]][curr_path[0]] != 0) {
// curr_res has the total weight of the
// solution we got
int curr_res = curr_weight + adj[curr_path[level - 1]][curr_path[0]];
// Update final result and final path if
// current result is better.
if (curr_res < final_res) {
copyToFinal(curr_path);
final_res = curr_res;
}
}
return;
}
// for any other level iterate for all vertices to
// build the search space tree recursively
for (int i = 0; i < n; i++) {
// Consider next vertex if it is not same (diagonal
// entry in adjacency matrix and not visited
// already)
if (adj[curr_path[level - 1]][i] != 0 && visited[i] == false) {
int temp = curr_bound;
curr_weight += adj[curr_path[level - 1]][i];
// different computation of curr_bound for
// level 2 from the other levels
if (level == 1)
curr_bound -=
((firstMin(adj, curr_path[level - 1]) + firstMin(adj, i)) / 2);
else
curr_bound -=
((secondMin(adj, curr_path[level - 1]) + firstMin(adj, i)) / 2);
// curr_bound + curr_weight is the actual lower bound
// for the node that we have arrived on
// If current lower bound < final_res, we need to explore
// the node further
if (curr_bound + curr_weight < final_res) {
curr_path[level] = i;
visited[i] = true;
// call TSP_Recursive for the next level
TSP_Recursive(adj, curr_bound, curr_weight, level + 1, curr_path);
}
// Else we have to prune the node by resetting
// all changes to curr_weight and curr_bound
curr_weight -= adj[curr_path[level - 1]][i];
curr_bound = temp;
// Also reset the visited array
visited.resize(visited.size(), false);
for (int j = 0; j <= level - 1; j++)
visited[curr_path[j]] = true;
}
}
}
// Function to copy temporary solution to
// the final solution
void copyToFinal(int curr_path[]) {
for (int i = 0; i < n; i++)
final_path[i] = curr_path[i];
final_path[n] = curr_path[0];
}
// print result
void print_result() {
cout << "Minimum Cost : " << final_res << endl;
std::cout << "Path taken :" << std::endl;
for (int i = 0; i < n; i++) {
std::cout << final_path[i] << " ";
}
std::cout << std::endl;
}
// Function to find the minimum edge cost
// having an end at the vertex i
int firstMin(vector<vector<int>> graph, int i) {
int min = INT_MAX;
for (int k = 0; k < n; k++)
if (graph[i][k] < min && i != k)
min = graph[i][k];
return min;
}
// function to find the second minimum edge cost
// having an end at the vertex i
int secondMin(vector<vector<int>> graph, int i) {
int first = INT_MAX, second = INT_MAX;
for (int j = 0; j < n; j++) {
if (i == j)
continue;
if (graph[i][j] <= first) {
second = first;
first = graph[i][j];
} else if (graph[i][j] <= second && graph[i][j] != first)
second = graph[i][j];
}
return second;
}
};
int main(int argc, const char **argv) {
vector<vector<int>> graph = {
{0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0}};
int n = graph.size();
int s = 0; /* source vertex*/
TSP tsp(graph, n);
tsp.solve(s);
tsp.print_result();
return 0;
}