forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rma.py
584 lines (472 loc) · 20.3 KB
/
rma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# Lint as: python2, python3
# pylint: disable=g-bad-file-header
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""RMA agent."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
from six.moves import range
from six.moves import zip
import sonnet as snt
import tensorflow.compat.v1 as tf
import trfl
from tvt import losses
from tvt import memory as memory_module
from tensorflow.contrib import framework as contrib_framework
nest = contrib_framework.nest
PolicyOutputs = collections.namedtuple(
'PolicyOutputs', ['policy', 'action', 'baseline'])
StepOutput = collections.namedtuple(
'StepOutput', ['action', 'baseline', 'read_info'])
AgentState = collections.namedtuple(
'AgentState', ['core_state', 'prev_action'])
Observation = collections.namedtuple(
'Observation', ['image', 'last_action', 'last_reward'])
RNNStateNoMem = collections.namedtuple(
'RNNStateNoMem', ['controller_outputs', 'h_controller'])
RNNState = collections.namedtuple(
'RNNState',
list(RNNStateNoMem._fields) + ['memory', 'mem_reads', 'h_mem_writer'])
CoreOutputs = collections.namedtuple(
'CoreOutputs', ['action', 'policy', 'baseline', 'z', 'read_info'])
def rnn_inputs_to_static_rnn_inputs(inputs):
"""Converts time major tensors to timestep lists."""
# Inputs to core build method are expected to be a tensor or tuple of tensors.
if isinstance(inputs, tuple):
num_timesteps = inputs[0].shape.as_list()[0]
converted_inputs = [tf.unstack(input_, num_timesteps) for input_ in inputs]
return list(zip(*converted_inputs))
else:
return tf.unstack(inputs)
def static_rnn_outputs_to_core_outputs(outputs):
"""Convert from length T list of nests to nest of tensors with first dim T."""
list_of_flats = [nest.flatten(n) for n in outputs]
new_outputs = list()
for i in range(len(list_of_flats[0])):
new_outputs.append(tf.stack([flat_nest[i] for flat_nest in list_of_flats]))
return nest.pack_sequence_as(structure=outputs[0], flat_sequence=new_outputs)
def unroll(core, initial_state, inputs, dtype=tf.float32):
"""Perform a static unroll of the core."""
static_rnn_inputs = rnn_inputs_to_static_rnn_inputs(inputs)
static_outputs, _ = tf.nn.static_rnn(
core,
inputs=static_rnn_inputs,
initial_state=initial_state,
dtype=dtype)
core_outputs = static_rnn_outputs_to_core_outputs(static_outputs)
return core_outputs
class ImageEncoderDecoder(snt.AbstractModule):
"""Image Encoder/Decoder module."""
def __init__(
self,
image_code_size,
name='image_encoder_decoder'):
"""Initialize the image encoder/decoder."""
super(ImageEncoderDecoder, self).__init__(name=name)
# This is set by a call to `encode`. `decode` will fail before this is set.
self._convnet_output_shape = None
with self._enter_variable_scope():
self._convnet = snt.nets.ConvNet2D(
output_channels=(16, 32),
kernel_shapes=(3, 3),
strides=(1, 1),
paddings=('SAME',))
self._post_convnet_layer = snt.Linear(image_code_size, name='final_layer')
@snt.reuse_variables
def encode(self, image):
"""Encode the image observation."""
convnet_output = self._convnet(image)
# Store unflattened convnet output shape for use in decoder.
self._convnet_output_shape = convnet_output.shape[1:]
# Flatten convnet outputs and pass through final layer to get image code.
return self._post_convnet_layer(snt.BatchFlatten()(convnet_output))
@snt.reuse_variables
def decode(self, code):
"""Decode the image observation from a latent code."""
if self._convnet_output_shape is None:
raise ValueError('Must call `encode` before `decode`.')
transpose_convnet_in_flat = snt.Linear(
self._convnet_output_shape.num_elements(),
name='decode_initial_linear')(
code)
transpose_convnet_in_flat = tf.nn.relu(transpose_convnet_in_flat)
transpose_convnet_in = snt.BatchReshape(
self._convnet_output_shape.as_list())(transpose_convnet_in_flat)
return self._convnet.transpose(None)(transpose_convnet_in)
def _build(self, *args): # Unused. Use encode/decode instead.
raise NotImplementedError('Use encode/decode methods instead of __call__.')
class Policy(snt.AbstractModule):
"""A policy module possibly containing a read-only DNC."""
def __init__(self,
num_actions,
num_policy_hiddens=(),
num_baseline_hiddens=(),
activation=tf.nn.tanh,
policy_clip_abs_value=10.0,
name='Policy'):
"""Construct a policy module possibly containing a read-only DNC.
Args:
num_actions: Number of discrete actions to choose from.
num_policy_hiddens: Tuple or List, sizes of policy MLP hidden layers.
num_baseline_hiddens: Tuple or List, sizes of baseline MLP hidden layers.
An empty tuple/list results in a linear layer instead of an MLP.
activation: Callable, e.g. tf.nn.tanh.
policy_clip_abs_value: float, Policy gradient clip value.
name: A string, the module's name
"""
super(Policy, self).__init__(name=name)
self._num_actions = num_actions
self._policy_layers = tuple(num_policy_hiddens) + (num_actions,)
self._baseline_layers = tuple(num_baseline_hiddens) + (1,)
self._policy_clip_abs_value = policy_clip_abs_value
self._activation = activation
def _build(self, inputs):
(shared_inputs, extra_policy_inputs) = inputs
policy_in = tf.concat([shared_inputs, extra_policy_inputs], axis=1)
policy = snt.nets.MLP(
output_sizes=self._policy_layers,
activation=self._activation,
name='policy_mlp')(
policy_in)
# Sample an action from the policy logits.
action = tf.multinomial(policy, num_samples=1, output_dtype=tf.int32)
action = tf.squeeze(action, 1) # [B, 1] -> [B]
if self._policy_clip_abs_value > 0:
policy = snt.clip_gradient(
net=policy,
clip_value_min=-self._policy_clip_abs_value,
clip_value_max=self._policy_clip_abs_value)
baseline_in = tf.concat([shared_inputs, tf.stop_gradient(policy)], axis=1)
baseline = snt.nets.MLP(
self._baseline_layers,
activation=self._activation,
name='baseline_mlp')(
baseline_in)
baseline = tf.squeeze(baseline, axis=-1) # [B, 1] -> [B]
if self._policy_clip_abs_value > 0:
baseline = snt.clip_gradient(
net=baseline,
clip_value_min=-self._policy_clip_abs_value,
clip_value_max=self._policy_clip_abs_value)
outputs = PolicyOutputs(
policy=policy,
action=action,
baseline=baseline)
return outputs
class _RMACore(snt.RNNCore):
"""RMA RNN Core."""
def __init__(self,
num_actions,
with_memory=True,
name='rma_core'):
super(_RMACore, self).__init__(name=name)
# MLP activation as callable.
mlp_activation = tf.nn.tanh
# Size of latent code written to memory (if using it) and used to
# reconstruct from (if including reconstructions).
num_latents = 200
# Value function decode settings.
baseline_mlp_num_hiddens = (200,)
# Policy settings.
num_policy_hiddens = (200,) # Only used for non-recurrent core.
# Controller settings.
control_hidden_size = 256
control_num_layers = 2
# Memory settings (only used if with_memory=True).
memory_size = 1000
memory_num_reads = 3
memory_top_k = 50
self._with_memory = with_memory
with self._enter_variable_scope():
# Construct the features -> latent encoder.
self._z_encoder_mlp = snt.nets.MLP(
output_sizes=(2 * num_latents, num_latents),
activation=mlp_activation,
activate_final=False,
name='z_encoder_mlp')
# Construct controller.
rnn_cores = [snt.LSTM(control_hidden_size)
for _ in range(control_num_layers)]
self._controller = snt.DeepRNN(
rnn_cores, skip_connections=True, name='controller')
# Construct memory.
if self._with_memory:
memory_dim = num_latents # Each write to memory is of size memory_dim.
self._mem_shape = (memory_size, memory_dim)
self._memory_reader = memory_module.MemoryReader(
memory_word_size=memory_dim,
num_read_heads=memory_num_reads,
top_k=memory_top_k,
memory_size=memory_size)
self._memory_writer = memory_module.MemoryWriter(
mem_shape=self._mem_shape)
# Construct policy, starting with policy_core and policy_action_head.
# `extra_inputs` in this case will be mem_out from current time step (note
# that mem_out is just the controller output if with_memory=False).
self._policy = Policy(
num_policy_hiddens=num_policy_hiddens,
num_actions=num_actions,
num_baseline_hiddens=baseline_mlp_num_hiddens,
activation=mlp_activation,
policy_clip_abs_value=10.0,)
# Set state_size and output_size.
controller_out_size = self._controller.output_size
controller_state_size = self._controller.state_size
self._state_size = RNNStateNoMem(controller_outputs=controller_out_size,
h_controller=controller_state_size)
read_info_size = ()
if self._with_memory:
mem_reads_size, read_info_size = self._memory_reader.output_size
mem_writer_state_size = self._memory_writer.state_size
self._state_size = RNNState(memory=tf.TensorShape(self._mem_shape),
mem_reads=mem_reads_size,
h_mem_writer=mem_writer_state_size,
**self._state_size._asdict())
z_size = num_latents
self._output_size = CoreOutputs(
action=tf.TensorShape([]), # Scalar tensor shapes must be explicit.
policy=num_actions,
baseline=tf.TensorShape([]), # Scalar tensor shapes must be explicit.
z=z_size,
read_info=read_info_size)
def _build(self, inputs, h_prev):
features = inputs
z_net_inputs = [features, h_prev.controller_outputs]
if self._with_memory:
z_net_inputs.append(h_prev.mem_reads)
z_net_inputs_concat = tf.concat(z_net_inputs, axis=1)
z = self._z_encoder_mlp(z_net_inputs_concat)
controller_out, h_controller = self._controller(z, h_prev.h_controller)
read_info = ()
if self._with_memory:
# Perform a memory read/write step before generating the policy_modules.
mem_reads, read_info = self._memory_reader((controller_out,
h_prev.memory))
memory, h_mem_writer = self._memory_writer((z, h_prev.memory),
h_prev.h_mem_writer)
policy_extra_input = tf.concat([controller_out, mem_reads], axis=1)
else:
policy_extra_input = controller_out
# Get policy, action and (possible empty) baseline from policy module.
policy_inputs = (z, policy_extra_input)
policy_outputs = self._policy(policy_inputs)
core_outputs = CoreOutputs(
z=z,
read_info=read_info,
**policy_outputs._asdict())
h_next = RNNStateNoMem(controller_outputs=controller_out,
h_controller=h_controller)
if self._with_memory:
h_next = RNNState(memory=memory,
mem_reads=mem_reads,
h_mem_writer=h_mem_writer,
**h_next._asdict())
return core_outputs, h_next
def initial_state(self, batch_size):
"""Use initial state for RNN modules, otherwise use zero state."""
zero_state = self.zero_state(batch_size, dtype=tf.float32)
controller_out = zero_state.controller_outputs
h_controller = self._controller.initial_state(batch_size)
state = RNNStateNoMem(controller_outputs=controller_out,
h_controller=h_controller)
if self._with_memory:
memory = zero_state.memory
mem_reads = zero_state.mem_reads
h_mem_writer = self._memory_writer.initial_state(batch_size)
state = RNNState(memory=memory,
mem_reads=mem_reads,
h_mem_writer=h_mem_writer,
**state._asdict())
return state
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size
class Agent(snt.AbstractModule):
"""Myriad RMA agent.
`latents` here refers to a purely deterministic encoding of the inputs, rather
than VAE-like latents in e.g. the MERLIN agent.
"""
def __init__(self,
batch_size,
with_reconstructions=True,
with_memory=True,
image_code_size=500,
image_cost_weight=50.,
num_actions=None,
observation_shape=None,
entropy_cost=0.01,
return_cost_weight=0.4,
gamma=0.96,
read_strength_cost=5e-5,
read_strength_tolerance=2.,
name='rma_agent'):
super(Agent, self).__init__(name=name)
self._batch_size = batch_size
self._with_reconstructions = with_reconstructions
self._image_cost_weight = image_cost_weight
self._image_code_size = image_code_size
self._entropy_cost = entropy_cost
self._return_cost_weight = return_cost_weight
self._gamma = gamma
self._read_strength_cost = read_strength_cost
self._read_strength_tolerance = read_strength_tolerance
self._num_actions = num_actions
self._name = name
self._logged_values = {}
# Store total number of pixels across channels (for image loss scaling).
self._total_num_pixels = np.prod(observation_shape)
with self._enter_variable_scope():
# Construct image encoder/decoder.
self._image_encoder_decoder = ImageEncoderDecoder(
image_code_size=image_code_size)
self._core = _RMACore(
num_actions=self._num_actions,
with_memory=with_memory)
def initial_state(self, batch_size):
with tf.name_scope(self._name + '/initial_state'):
return AgentState(
core_state=self._core.initial_state(batch_size),
prev_action=tf.zeros(shape=(batch_size,), dtype=tf.int32))
def _prepare_observations(self, observation, last_reward, last_action):
image = observation
# Make sure the entries are in [0, 1) range.
if image.dtype.is_integer:
image = tf.cast(image, tf.float32) / 255.
if last_reward is None:
# For some envs, in the first timestep the last_reward can be None.
batch_size = observation.shape[0]
last_reward = tf.zeros((batch_size,), dtype=tf.float32)
return Observation(
image=image,
last_action=last_action,
last_reward=last_reward)
@snt.reuse_variables
def _encode(self, observation, last_reward, last_action):
inputs = self._prepare_observations(observation, last_reward, last_action)
# Encode image observation.
obs_code = self._image_encoder_decoder.encode(inputs.image)
# Encode last action.
action_code = tf.one_hot(inputs.last_action, self._num_actions)
# Encode last reward.
reward_code = tf.expand_dims(inputs.last_reward, -1)
features = tf.concat([obs_code, action_code, reward_code], axis=1)
return inputs, features
@snt.reuse_variables
def _decode(self, z):
# Decode image.
image_recon = self._image_encoder_decoder.decode(z)
# Decode action.
action_recon = snt.Linear(self._num_actions, name='action_recon_linear')(z)
# Decode reward.
reward_recon = snt.Linear(1, name='reward_recon_linear')(z)
# Full reconstructions.
recons = Observation(
image=image_recon,
last_reward=reward_recon,
last_action=action_recon)
return recons
def step(self, reward, observation, prev_state):
with tf.name_scope(self._name + '/step'):
_, features = self._encode(observation, reward, prev_state.prev_action)
core_outputs, next_core_state = self._core(
features, prev_state.core_state)
action = core_outputs.action
step_output = StepOutput(
action=action,
baseline=core_outputs.baseline,
read_info=core_outputs.read_info)
agent_state = AgentState(
core_state=next_core_state,
prev_action=action)
return step_output, agent_state
@snt.reuse_variables
def loss(self, observations, rewards, actions, additional_rewards=None):
"""Compute the loss."""
dummy_zeroth_step_actions = tf.zeros_like(actions[:1])
all_actions = tf.concat([dummy_zeroth_step_actions, actions], axis=0)
inputs, features = snt.BatchApply(self._encode)(
observations, rewards, all_actions)
rewards = rewards[1:] # Zeroth step reward not correlated to actions.
if additional_rewards is not None:
# Additional rewards are not passed to the encoder (above) in order to be
# consistent with the step, nor to the recon loss so that recons are
# consistent with the observations. Thus, additional rewards only affect
# the returns used to learn the value function.
rewards += additional_rewards
initial_state = self._core.initial_state(self._batch_size)
rnn_inputs = features
core_outputs = unroll(self._core, initial_state, rnn_inputs)
# Remove final timestep of outputs.
core_outputs = nest.map_structure(lambda t: t[:-1], core_outputs)
if self._with_reconstructions:
recons = snt.BatchApply(self._decode)(core_outputs.z)
recon_targets = nest.map_structure(lambda t: t[:-1], inputs)
recon_loss, recon_logged_values = losses.reconstruction_losses(
recons=recons,
targets=recon_targets,
image_cost=self._image_cost_weight / self._total_num_pixels,
action_cost=1.,
reward_cost=1.)
else:
recon_loss = tf.constant(0.0)
recon_logged_values = dict()
if core_outputs.read_info is not tuple():
read_reg_loss, read_reg_logged_values = (
losses.read_regularization_loss(
read_info=core_outputs.read_info,
strength_cost=self._read_strength_cost,
strength_tolerance=self._read_strength_tolerance,
strength_reg_mode='L1',
key_norm_cost=0.,
key_norm_tolerance=1.))
else:
read_reg_loss = tf.constant(0.0)
read_reg_logged_values = dict()
# Bootstrap value is at end of episode so is zero.
bootstrap_value = tf.zeros(shape=(self._batch_size,), dtype=tf.float32)
discounts = self._gamma * tf.ones_like(rewards)
a2c_loss, a2c_loss_extra = trfl.sequence_advantage_actor_critic_loss(
policy_logits=core_outputs.policy,
baseline_values=core_outputs.baseline,
actions=actions,
rewards=rewards,
pcontinues=discounts,
bootstrap_value=bootstrap_value,
lambda_=self._gamma,
entropy_cost=self._entropy_cost,
baseline_cost=self._return_cost_weight,
name='SequenceA2CLoss')
a2c_loss = tf.reduce_mean(a2c_loss) # Average over batch.
total_loss = a2c_loss + recon_loss + read_reg_loss
a2c_loss_logged_values = dict(
pg_loss=tf.reduce_mean(a2c_loss_extra.policy_gradient_loss),
baseline_loss=tf.reduce_mean(a2c_loss_extra.baseline_loss),
entropy_loss=tf.reduce_mean(a2c_loss_extra.entropy_loss))
agent_loss_log = losses.combine_logged_values(
a2c_loss_logged_values,
recon_logged_values,
read_reg_logged_values)
agent_loss_log['total_loss'] = total_loss
return total_loss, agent_loss_log
def _build(self, *args): # Unused.
# pylint: disable=no-value-for-parameter
return self.step(*args)
# pylint: enable=no-value-for-parameter