forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_model.py
163 lines (133 loc) · 5.89 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example code for running model on CLEVRER."""
import json
from absl import app
from absl import flags
import numpy as np
import tensorflow.compat.v1 as tf
from object_attention_for_reasoning import model as modellib
BATCH_SIZE = 1
NUM_FRAMES = 25
NUM_OBJECTS = 8
_BASE_DIR = flags.DEFINE_string(
"base_dir", "./clevrer_monet_latents",
"Directory containing checkpoints and MONet latents.")
_SCENE_IDX = flags.DEFINE_string(
"scene_idx", 1000, "Scene index of CLEVRER video.")
def load_monet_latents(base_dir, scene_index):
filename = f"{base_dir}/train/{scene_index}.npz"
with open(filename, "rb") as f:
return np.load(f)
def _split_string(s):
"""Splits string to words and standardize alphabet."""
return s.lower().replace("?", "").split()
def _pad(array, length):
"""Pad an array to desired length."""
return np.pad(array, [(0, length - array.shape[0])], mode="constant")
def encode_sentence(token_map, sentence, pad_length):
"""Encode CLEVRER question/choice sentences as sequence of token ids."""
ret = np.array(
[token_map["question_vocab"][w] for w in _split_string(sentence)],
np.int32)
return _pad(ret, pad_length)
def encode_choices(token_map, choices):
"""Encode CLEVRER choices."""
arrays = [encode_sentence(token_map, choice["choice"],
modellib.MAX_CHOICE_LENGTH)
for choice in choices]
return _pad(np.stack(arrays, axis=0), modellib.NUM_CHOICES)
def main(unused_argv):
base_dir = _BASE_DIR.value
with open(f"{base_dir}/vocab.json", "rb") as f:
token_map = json.load(f)
reverse_answer_lookup = {v: k for k, v in token_map["answer_vocab"].items()}
with open(f"{base_dir}/train.json", "rb") as f:
questions_data = json.load(f)
tf.reset_default_graph()
model = modellib.ClevrerTransformerModel(**modellib.PRETRAINED_MODEL_CONFIG)
inputs_descriptive = {
"monet_latents": tf.placeholder(
tf.float32,
[BATCH_SIZE, NUM_FRAMES, NUM_OBJECTS, modellib.EMBED_DIM]),
"question": tf.placeholder(
tf.int32, [BATCH_SIZE, modellib.MAX_QUESTION_LENGTH]),
}
inputs_mc = {
"monet_latents": tf.placeholder(
tf.float32,
[BATCH_SIZE, NUM_FRAMES, NUM_OBJECTS, modellib.EMBED_DIM]),
"question": tf.placeholder(tf.int32,
[BATCH_SIZE, modellib.MAX_QUESTION_LENGTH]),
"choices": tf.placeholder(
tf.int32, [BATCH_SIZE, modellib.NUM_CHOICES,
modellib.MAX_CHOICE_LENGTH]),
}
output_descriptive = model.apply_model_descriptive(inputs_descriptive)
output_mc = model.apply_model_mc(inputs_mc)
# Restore from checkpoint
saver = tf.train.Saver()
checkpoint_dir = f"{base_dir}/checkpoints/"
sess = tf.train.SingularMonitoredSession(checkpoint_dir=checkpoint_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
saver.restore(sess, ckpt.model_checkpoint_path)
def eval_descriptive(monet_latents, question_json):
# CLEVRER provides videos with 128 frames. In our model, we subsample 25
# frames (as was done in Yi et al (2020)).
# For training, we randomize the choice of 25 frames, and for evaluation, we
# sample the 25 frames as evenly as possible.
# We do that by doing strided sampling of the frames.
stride, rem = divmod(monet_latents.shape[0], NUM_FRAMES)
monet_latents = monet_latents[None, :-rem:stride]
assert monet_latents.shape[1] == NUM_FRAMES
question = encode_sentence(token_map, question_json["question"],
modellib.MAX_QUESTION_LENGTH)
batched_question = np.expand_dims(question, axis=0)
logits = sess.run(output_descriptive, feed_dict={
inputs_descriptive["monet_latents"]: monet_latents,
inputs_descriptive["question"]: batched_question,
})
descriptive_answer = np.argmax(logits)
return reverse_answer_lookup[descriptive_answer]
def eval_mc(monet_latents, question_json):
stride, rem = divmod(monet_latents.shape[0], NUM_FRAMES)
monet_latents = monet_latents[None, :-rem:stride]
assert monet_latents.shape[1] == NUM_FRAMES
question = encode_sentence(
token_map, question_json["question"], modellib.MAX_QUESTION_LENGTH)
choices = encode_choices(
token_map, question_json["choices"])
mc_answer = sess.run(output_mc, feed_dict={
inputs_mc["monet_latents"]: monet_latents,
inputs_mc["question"]: np.expand_dims(question, axis=0),
inputs_mc["choices"]: np.expand_dims(choices, axis=0),
})
return mc_answer >= 0
sample_scene_idx = _SCENE_IDX.value
question_json = questions_data[sample_scene_idx]["questions"][0]
print("Descriptive Question: ", question_json["question"])
print("Model Answer: ",
eval_descriptive(load_monet_latents(base_dir, sample_scene_idx),
question_json))
print("True Answer: ", question_json["answer"])
question_json = questions_data[sample_scene_idx]["questions"][-1]
print("Multiple-Choice Question: ", question_json["question"])
for i, choice_json in enumerate(question_json["choices"]):
print(f"{i+1}) {choice_json['choice']}")
print("Model Answer: ",
eval_mc(load_monet_latents(base_dir, sample_scene_idx), question_json))
print("True Answer: ",
[choice_json["answer"] for choice_json in question_json["choices"]])
if __name__ == "__main__":
app.run(main)