forked from apache/iceberg-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschema.go
1216 lines (1009 loc) · 30.9 KB
/
schema.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
package iceberg
import (
"encoding/json"
"fmt"
"maps"
"slices"
"strings"
"sync"
"sync/atomic"
)
// Schema is an Iceberg table schema, represented as a struct with
// multiple fields. The fields are only exported via accessor methods
// rather than exposing the slice directly in order to ensure a schema
// as immutable.
type Schema struct {
ID int `json:"schema-id"`
IdentifierFieldIDs []int `json:"identifier-field-ids"`
fields []NestedField
// the following maps are lazily populated as needed.
// rather than have lock contention with a mutex, we can use
// atomic pointers to Store/Load the values.
idToName atomic.Pointer[map[int]string]
idToField atomic.Pointer[map[int]NestedField]
nameToID atomic.Pointer[map[string]int]
nameToIDLower atomic.Pointer[map[string]int]
idToAccessor atomic.Pointer[map[int]accessor]
lazyIDToParent func() (map[int]int, error)
}
// NewSchema constructs a new schema with the provided ID
// and list of fields.
func NewSchema(id int, fields ...NestedField) *Schema {
return NewSchemaWithIdentifiers(id, []int{}, fields...)
}
// NewSchemaWithIdentifiers constructs a new schema with the provided ID
// and fields, along with a slice of field IDs to be listed as identifier
// fields.
func NewSchemaWithIdentifiers(id int, identifierIDs []int, fields ...NestedField) *Schema {
s := &Schema{ID: id, fields: fields, IdentifierFieldIDs: identifierIDs}
s.lazyIDToParent = sync.OnceValues(func() (map[int]int, error) {
return IndexParents(s)
})
return s
}
func (s *Schema) String() string {
var b strings.Builder
b.WriteString("table {")
for _, f := range s.fields {
b.WriteString("\n\t")
b.WriteString(f.String())
}
b.WriteString("\n}")
return b.String()
}
func (s *Schema) lazyNameToID() (map[string]int, error) {
index := s.nameToID.Load()
if index != nil {
return *index, nil
}
idx, err := IndexByName(s)
if err != nil {
return nil, err
}
s.nameToID.Store(&idx)
return idx, nil
}
func (s *Schema) lazyIDToField() (map[int]NestedField, error) {
index := s.idToField.Load()
if index != nil {
return *index, nil
}
idx, err := IndexByID(s)
if err != nil {
return nil, err
}
s.idToField.Store(&idx)
return idx, nil
}
func (s *Schema) lazyIDToName() (map[int]string, error) {
index := s.idToName.Load()
if index != nil {
return *index, nil
}
idx, err := IndexNameByID(s)
if err != nil {
return nil, err
}
s.idToName.Store(&idx)
return idx, nil
}
func (s *Schema) lazyNameToIDLower() (map[string]int, error) {
index := s.nameToIDLower.Load()
if index != nil {
return *index, nil
}
idx, err := s.lazyNameToID()
if err != nil {
return nil, err
}
out := make(map[string]int)
for k, v := range idx {
out[strings.ToLower(k)] = v
}
s.nameToIDLower.Store(&out)
return out, nil
}
func (s *Schema) lazyIdToAccessor() (map[int]accessor, error) {
index := s.idToAccessor.Load()
if index != nil {
return *index, nil
}
idx, err := buildAccessors(s)
if err != nil {
return nil, err
}
s.idToAccessor.Store(&idx)
return idx, nil
}
func (s *Schema) Type() string { return "struct" }
// AsStruct returns a Struct with the same fields as the schema which can
// then be used as a Type.
func (s *Schema) AsStruct() StructType { return StructType{FieldList: s.fields} }
func (s *Schema) NumFields() int { return len(s.fields) }
func (s *Schema) Field(i int) NestedField { return s.fields[i] }
func (s *Schema) Fields() []NestedField { return slices.Clone(s.fields) }
func (s *Schema) UnmarshalJSON(b []byte) error {
type Alias Schema
aux := struct {
Fields []NestedField `json:"fields"`
*Alias
}{Alias: (*Alias)(s)}
if err := json.Unmarshal(b, &aux); err != nil {
return err
}
if s.lazyIDToParent == nil {
s.lazyIDToParent = sync.OnceValues(func() (map[int]int, error) {
return IndexParents(s)
})
}
s.fields = aux.Fields
if s.IdentifierFieldIDs == nil {
s.IdentifierFieldIDs = []int{}
}
return nil
}
func (s *Schema) MarshalJSON() ([]byte, error) {
if s.IdentifierFieldIDs == nil {
s.IdentifierFieldIDs = []int{}
}
type Alias Schema
return json.Marshal(struct {
Type string `json:"type"`
Fields []NestedField `json:"fields"`
*Alias
}{Type: "struct", Fields: s.fields, Alias: (*Alias)(s)})
}
// FindColumnName returns the name of the column identified by the
// passed in field id. The second return value reports whether or
// not the field id was found in the schema.
func (s *Schema) FindColumnName(fieldID int) (string, bool) {
idx, _ := s.lazyIDToName()
col, ok := idx[fieldID]
return col, ok
}
// FindFieldByName returns the field identified by the name given,
// the second return value will be false if no field by this name
// is found.
//
// Note: This search is done in a case sensitive manner. To perform
// a case insensitive search, use [*Schema.FindFieldByNameCaseInsensitive].
func (s *Schema) FindFieldByName(name string) (NestedField, bool) {
idx, _ := s.lazyNameToID()
id, ok := idx[name]
if !ok {
return NestedField{}, false
}
return s.FindFieldByID(id)
}
// FindFieldByNameCaseInsensitive is like [*Schema.FindFieldByName],
// but performs a case insensitive search.
func (s *Schema) FindFieldByNameCaseInsensitive(name string) (NestedField, bool) {
idx, _ := s.lazyNameToIDLower()
id, ok := idx[strings.ToLower(name)]
if !ok {
return NestedField{}, false
}
return s.FindFieldByID(id)
}
// FindFieldByID is like [*Schema.FindColumnName], but returns the whole
// field rather than just the field name.
func (s *Schema) FindFieldByID(id int) (NestedField, bool) {
idx, _ := s.lazyIDToField()
f, ok := idx[id]
return f, ok
}
// FindTypeByID is like [*Schema.FindFieldByID], but returns only the data
// type of the field.
func (s *Schema) FindTypeByID(id int) (Type, bool) {
f, ok := s.FindFieldByID(id)
if !ok {
return nil, false
}
return f.Type, true
}
// FindTypeByName is a convenience function for calling [*Schema.FindFieldByName],
// and then returning just the type.
func (s *Schema) FindTypeByName(name string) (Type, bool) {
f, ok := s.FindFieldByName(name)
if !ok {
return nil, false
}
return f.Type, true
}
// FindTypeByNameCaseInsensitive is like [*Schema.FindTypeByName] but
// performs a case insensitive search.
func (s *Schema) FindTypeByNameCaseInsensitive(name string) (Type, bool) {
f, ok := s.FindFieldByNameCaseInsensitive(name)
if !ok {
return nil, false
}
return f.Type, true
}
func (s *Schema) accessorForField(id int) (accessor, bool) {
idx, err := s.lazyIdToAccessor()
if err != nil {
return accessor{}, false
}
acc, ok := idx[id]
return acc, ok
}
// Equals compares the fields and identifierIDs, but does not compare
// the schema ID itself.
func (s *Schema) Equals(other *Schema) bool {
if other == nil {
return false
}
if s == other {
return true
}
if len(s.fields) != len(other.fields) {
return false
}
if !slices.Equal(s.IdentifierFieldIDs, other.IdentifierFieldIDs) {
return false
}
return slices.EqualFunc(s.fields, other.fields, func(a, b NestedField) bool {
return a.Equals(b)
})
}
// HighestFieldID returns the value of the numerically highest field ID
// in this schema.
func (s *Schema) HighestFieldID() int {
id, _ := Visit[int](s, findLastFieldID{})
return id
}
type Void = struct{}
var void = Void{}
// Select creates a new schema with just the fields identified by name
// passed in the order they are provided. If caseSensitive is false,
// then fields will be identified by case insensitive search.
//
// An error is returned if a requested name cannot be found.
func (s *Schema) Select(caseSensitive bool, names ...string) (*Schema, error) {
ids := make(map[int]Void)
if caseSensitive {
nameMap, _ := s.lazyNameToID()
for _, n := range names {
id, ok := nameMap[n]
if !ok {
return nil, fmt.Errorf("%w: could not find column %s", ErrInvalidSchema, n)
}
ids[id] = void
}
} else {
nameMap, _ := s.lazyNameToIDLower()
for _, n := range names {
id, ok := nameMap[strings.ToLower(n)]
if !ok {
return nil, fmt.Errorf("%w: could not find column %s", ErrInvalidSchema, n)
}
ids[id] = void
}
}
return PruneColumns(s, ids, true)
}
func (s *Schema) FieldHasOptionalParent(id int) bool {
idToParent, _ := s.lazyIDToParent()
idToField, _ := s.lazyIDToField()
f, ok := idToField[id]
if !ok {
return false
}
for {
parent, ok := idToParent[f.ID]
if !ok {
return false
}
if f = idToField[parent]; !f.Required {
return true
}
}
}
// SchemaVisitor is an interface that can be implemented to allow for
// easy traversal and processing of a schema.
//
// A SchemaVisitor can also optionally implement the Before/After Field,
// ListElement, MapKey, or MapValue interfaces to allow them to get called
// at the appropriate points within schema traversal.
type SchemaVisitor[T any] interface {
Schema(schema *Schema, structResult T) T
Struct(st StructType, fieldResults []T) T
Field(field NestedField, fieldResult T) T
List(list ListType, elemResult T) T
Map(mapType MapType, keyResult, valueResult T) T
Primitive(p PrimitiveType) T
}
type BeforeFieldVisitor interface {
BeforeField(field NestedField)
}
type AfterFieldVisitor interface {
AfterField(field NestedField)
}
type BeforeListElementVisitor interface {
BeforeListElement(elem NestedField)
}
type AfterListElementVisitor interface {
AfterListElement(elem NestedField)
}
type BeforeMapKeyVisitor interface {
BeforeMapKey(key NestedField)
}
type AfterMapKeyVisitor interface {
AfterMapKey(key NestedField)
}
type BeforeMapValueVisitor interface {
BeforeMapValue(value NestedField)
}
type AfterMapValueVisitor interface {
AfterMapValue(value NestedField)
}
type SchemaVisitorPerPrimitiveType[T any] interface {
SchemaVisitor[T]
VisitFixed(FixedType) T
VisitDecimal(DecimalType) T
VisitBoolean() T
VisitInt32() T
VisitInt64() T
VisitFloat32() T
VisitFloat64() T
VisitDate() T
VisitTime() T
VisitTimestamp() T
VisitTimestampTz() T
VisitString() T
VisitBinary() T
VisitUUID() T
}
// Visit accepts a visitor and performs a post-order traversal of the given schema.
func Visit[T any](sc *Schema, visitor SchemaVisitor[T]) (res T, err error) {
if sc == nil {
err = fmt.Errorf("%w: cannot visit nil schema", ErrInvalidArgument)
return
}
defer func() {
if r := recover(); r != nil {
switch e := r.(type) {
case string:
err = fmt.Errorf("error encountered during schema visitor: %s", e)
case error:
err = fmt.Errorf("error encountered during schema visitor: %w", e)
}
}
}()
return visitor.Schema(sc, visitStruct(sc.AsStruct(), visitor)), nil
}
func visitStruct[T any](obj StructType, visitor SchemaVisitor[T]) T {
results := make([]T, len(obj.FieldList))
bf, _ := visitor.(BeforeFieldVisitor)
af, _ := visitor.(AfterFieldVisitor)
for i, f := range obj.FieldList {
if bf != nil {
bf.BeforeField(f)
}
res := visitField(f, visitor)
if af != nil {
af.AfterField(f)
}
results[i] = visitor.Field(f, res)
}
return visitor.Struct(obj, results)
}
func visitList[T any](obj ListType, visitor SchemaVisitor[T]) T {
elemField := obj.ElementField()
if bl, ok := visitor.(BeforeListElementVisitor); ok {
bl.BeforeListElement(elemField)
} else if bf, ok := visitor.(BeforeFieldVisitor); ok {
bf.BeforeField(elemField)
}
res := visitField(elemField, visitor)
if al, ok := visitor.(AfterListElementVisitor); ok {
al.AfterListElement(elemField)
} else if af, ok := visitor.(AfterFieldVisitor); ok {
af.AfterField(elemField)
}
return visitor.List(obj, res)
}
func visitMap[T any](obj MapType, visitor SchemaVisitor[T]) T {
keyField, valueField := obj.KeyField(), obj.ValueField()
if bmk, ok := visitor.(BeforeMapKeyVisitor); ok {
bmk.BeforeMapKey(keyField)
} else if bf, ok := visitor.(BeforeFieldVisitor); ok {
bf.BeforeField(keyField)
}
keyRes := visitField(keyField, visitor)
if amk, ok := visitor.(AfterMapKeyVisitor); ok {
amk.AfterMapKey(keyField)
} else if af, ok := visitor.(AfterFieldVisitor); ok {
af.AfterField(keyField)
}
if bmk, ok := visitor.(BeforeMapValueVisitor); ok {
bmk.BeforeMapValue(valueField)
} else if bf, ok := visitor.(BeforeFieldVisitor); ok {
bf.BeforeField(valueField)
}
valueRes := visitField(valueField, visitor)
if amk, ok := visitor.(AfterMapValueVisitor); ok {
amk.AfterMapValue(valueField)
} else if af, ok := visitor.(AfterFieldVisitor); ok {
af.AfterField(valueField)
}
return visitor.Map(obj, keyRes, valueRes)
}
func visitField[T any](f NestedField, visitor SchemaVisitor[T]) T {
switch typ := f.Type.(type) {
case *StructType:
return visitStruct(*typ, visitor)
case *ListType:
return visitList(*typ, visitor)
case *MapType:
return visitMap(*typ, visitor)
default: // primitive
if perPrimitive, ok := visitor.(SchemaVisitorPerPrimitiveType[T]); ok {
switch t := typ.(type) {
case BooleanType:
return perPrimitive.VisitBoolean()
case Int32Type:
return perPrimitive.VisitInt32()
case Int64Type:
return perPrimitive.VisitInt64()
case Float32Type:
return perPrimitive.VisitFloat32()
case Float64Type:
return perPrimitive.VisitFloat64()
case DateType:
return perPrimitive.VisitDate()
case TimeType:
return perPrimitive.VisitTime()
case TimestampType:
return perPrimitive.VisitTimestamp()
case TimestampTzType:
return perPrimitive.VisitTimestampTz()
case StringType:
return perPrimitive.VisitString()
case BinaryType:
return perPrimitive.VisitBinary()
case UUIDType:
return perPrimitive.VisitUUID()
case DecimalType:
return perPrimitive.VisitDecimal(t)
case FixedType:
return perPrimitive.VisitFixed(t)
}
}
return visitor.Primitive(typ.(PrimitiveType))
}
}
// IndexByID performs a post-order traversal of the given schema and
// returns a mapping from field ID to field.
func IndexByID(schema *Schema) (map[int]NestedField, error) {
return Visit[map[int]NestedField](schema, &indexByID{index: make(map[int]NestedField)})
}
type indexByID struct {
index map[int]NestedField
}
func (i *indexByID) Schema(*Schema, map[int]NestedField) map[int]NestedField {
return i.index
}
func (i *indexByID) Struct(StructType, []map[int]NestedField) map[int]NestedField {
return i.index
}
func (i *indexByID) Field(field NestedField, _ map[int]NestedField) map[int]NestedField {
i.index[field.ID] = field
return i.index
}
func (i *indexByID) List(list ListType, _ map[int]NestedField) map[int]NestedField {
i.index[list.ElementID] = list.ElementField()
return i.index
}
func (i *indexByID) Map(mapType MapType, _, _ map[int]NestedField) map[int]NestedField {
i.index[mapType.KeyID] = mapType.KeyField()
i.index[mapType.ValueID] = mapType.ValueField()
return i.index
}
func (i *indexByID) Primitive(PrimitiveType) map[int]NestedField {
return i.index
}
// IndexByName performs a post-order traversal of the schema and returns
// a mapping from field name to field ID.
func IndexByName(schema *Schema) (map[string]int, error) {
if schema == nil {
return nil, fmt.Errorf("%w: cannot index nil schema", ErrInvalidArgument)
}
if len(schema.fields) > 0 {
indexer := &indexByName{
index: make(map[string]int),
shortNameId: make(map[string]int),
fieldNames: make([]string, 0),
shortFieldNames: make([]string, 0),
}
if _, err := Visit[map[string]int](schema, indexer); err != nil {
return nil, err
}
return indexer.ByName(), nil
}
return map[string]int{}, nil
}
// IndexNameByID performs a post-order traversal of the schema and returns
// a mapping from field ID to field name.
func IndexNameByID(schema *Schema) (map[int]string, error) {
indexer := &indexByName{
index: make(map[string]int),
shortNameId: make(map[string]int),
fieldNames: make([]string, 0),
shortFieldNames: make([]string, 0),
}
if _, err := Visit[map[string]int](schema, indexer); err != nil {
return nil, err
}
return indexer.ByID(), nil
}
type indexByName struct {
index map[string]int
shortNameId map[string]int
combinedIndex map[string]int
fieldNames []string
shortFieldNames []string
}
func (i *indexByName) ByID() map[int]string {
idToName := make(map[int]string)
for k, v := range i.index {
idToName[v] = k
}
return idToName
}
func (i *indexByName) ByName() map[string]int {
i.combinedIndex = maps.Clone(i.shortNameId)
maps.Copy(i.combinedIndex, i.index)
return i.combinedIndex
}
func (i *indexByName) Primitive(PrimitiveType) map[string]int { return i.index }
func (i *indexByName) addField(name string, fieldID int) {
fullName := name
if len(i.fieldNames) > 0 {
fullName = strings.Join(i.fieldNames, ".") + "." + name
}
if _, ok := i.index[fullName]; ok {
panic(fmt.Errorf("%w: multiple fields for name %s: %d and %d",
ErrInvalidSchema, fullName, i.index[fullName], fieldID))
}
i.index[fullName] = fieldID
if len(i.shortFieldNames) > 0 {
shortName := strings.Join(i.shortFieldNames, ".") + "." + name
i.shortNameId[shortName] = fieldID
}
}
func (i *indexByName) Schema(*Schema, map[string]int) map[string]int {
return i.index
}
func (i *indexByName) Struct(StructType, []map[string]int) map[string]int {
return i.index
}
func (i *indexByName) Field(field NestedField, _ map[string]int) map[string]int {
i.addField(field.Name, field.ID)
return i.index
}
func (i *indexByName) List(list ListType, _ map[string]int) map[string]int {
i.addField(list.ElementField().Name, list.ElementID)
return i.index
}
func (i *indexByName) Map(mapType MapType, _, _ map[string]int) map[string]int {
i.addField(mapType.KeyField().Name, mapType.KeyID)
i.addField(mapType.ValueField().Name, mapType.ValueID)
return i.index
}
func (i *indexByName) BeforeListElement(elem NestedField) {
if _, ok := elem.Type.(*StructType); !ok {
i.shortFieldNames = append(i.shortFieldNames, elem.Name)
}
i.fieldNames = append(i.fieldNames, elem.Name)
}
func (i *indexByName) AfterListElement(elem NestedField) {
if _, ok := elem.Type.(*StructType); !ok {
i.shortFieldNames = i.shortFieldNames[:len(i.shortFieldNames)-1]
}
i.fieldNames = i.fieldNames[:len(i.fieldNames)-1]
}
func (i *indexByName) BeforeField(field NestedField) {
i.fieldNames = append(i.fieldNames, field.Name)
i.shortFieldNames = append(i.shortFieldNames, field.Name)
}
func (i *indexByName) AfterField(field NestedField) {
i.fieldNames = i.fieldNames[:len(i.fieldNames)-1]
i.shortFieldNames = i.shortFieldNames[:len(i.shortFieldNames)-1]
}
// PruneColumns visits a schema pruning any columns which do not exist in the
// provided selected set. Parent fields of a selected child will be retained.
func PruneColumns(schema *Schema, selected map[int]Void, selectFullTypes bool) (*Schema, error) {
result, err := Visit(schema, &pruneColVisitor{selected: selected,
fullTypes: selectFullTypes})
if err != nil {
return nil, err
}
n, ok := result.(NestedType)
if !ok {
n = &StructType{}
}
newIdentifierIDs := make([]int, 0, len(schema.IdentifierFieldIDs))
for _, id := range schema.IdentifierFieldIDs {
if _, ok := selected[id]; ok {
newIdentifierIDs = append(newIdentifierIDs, id)
}
}
return &Schema{
fields: n.Fields(),
ID: schema.ID,
IdentifierFieldIDs: newIdentifierIDs,
}, nil
}
type pruneColVisitor struct {
selected map[int]Void
fullTypes bool
}
func (p *pruneColVisitor) Schema(_ *Schema, structResult Type) Type {
return structResult
}
func (p *pruneColVisitor) Struct(st StructType, fieldResults []Type) Type {
selected, fields := []NestedField{}, st.FieldList
sameType := true
for i, t := range fieldResults {
field := fields[i]
if field.Type == t {
selected = append(selected, field)
} else if t != nil {
sameType = false
// type has changed, create a new field with the projected type
selected = append(selected, NestedField{
ID: field.ID,
Name: field.Name,
Type: t,
Doc: field.Doc,
Required: field.Required,
})
}
}
if len(selected) > 0 {
if len(selected) == len(fields) && sameType {
// nothing changed, return the original
return &st
} else {
return &StructType{FieldList: selected}
}
}
return nil
}
func (p *pruneColVisitor) Field(field NestedField, fieldResult Type) Type {
_, ok := p.selected[field.ID]
if !ok {
if fieldResult != nil {
return fieldResult
}
return nil
}
if p.fullTypes {
return field.Type
}
if _, ok := field.Type.(*StructType); ok {
return p.projectSelectedStruct(fieldResult)
}
typ, ok := field.Type.(PrimitiveType)
if !ok {
panic(fmt.Errorf("%w: cannot explicitly project List or Map types, %d:%s of type %s was selected",
ErrInvalidSchema, field.ID, field.Name, field.Type))
}
return typ
}
func (p *pruneColVisitor) List(list ListType, elemResult Type) Type {
_, ok := p.selected[list.ElementID]
if !ok {
if elemResult != nil {
return p.projectList(&list, elemResult)
}
return nil
}
if p.fullTypes {
return &list
}
_, ok = list.Element.(*StructType)
if list.Element != nil && ok {
projected := p.projectSelectedStruct(elemResult)
return p.projectList(&list, projected)
}
if _, ok = list.Element.(PrimitiveType); !ok {
panic(fmt.Errorf("%w: cannot explicitly project List or Map types, %d of type %s was selected",
ErrInvalidSchema, list.ElementID, list.Element))
}
return &list
}
func (p *pruneColVisitor) Map(mapType MapType, keyResult, valueResult Type) Type {
_, ok := p.selected[mapType.ValueID]
if !ok {
if valueResult != nil {
return p.projectMap(&mapType, valueResult)
}
if _, ok = p.selected[mapType.KeyID]; ok {
return &mapType
}
return nil
}
if p.fullTypes {
return &mapType
}
_, ok = mapType.ValueType.(*StructType)
if mapType.ValueType != nil && ok {
projected := p.projectSelectedStruct(valueResult)
return p.projectMap(&mapType, projected)
}
if _, ok = mapType.ValueType.(PrimitiveType); !ok {
panic(fmt.Errorf("%w: cannot explicitly project List or Map types, Map value %d of type %s was selected",
ErrInvalidSchema, mapType.ValueID, mapType.ValueType))
}
return &mapType
}
func (p *pruneColVisitor) Primitive(_ PrimitiveType) Type { return nil }
func (*pruneColVisitor) projectSelectedStruct(projected Type) *StructType {
if projected == nil {
return &StructType{}
}
if ty, ok := projected.(*StructType); ok {
return ty
}
panic("expected a struct")
}
func (*pruneColVisitor) projectList(listType *ListType, elementResult Type) *ListType {
if listType.Element.Equals(elementResult) {
return listType
}
return &ListType{ElementID: listType.ElementID, Element: elementResult,
ElementRequired: listType.ElementRequired}
}
func (*pruneColVisitor) projectMap(mapType *MapType, valueResult Type) *MapType {
if mapType.ValueType.Equals(valueResult) {
return mapType
}
return &MapType{
KeyID: mapType.KeyID,
ValueID: mapType.ValueID,
KeyType: mapType.KeyType,
ValueType: valueResult,
ValueRequired: mapType.ValueRequired,
}
}
type findLastFieldID struct{}
func (findLastFieldID) Schema(_ *Schema, result int) int {
return result
}
func (findLastFieldID) Struct(_ StructType, fieldResults []int) int {
return max(fieldResults...)
}
func (findLastFieldID) Field(field NestedField, fieldResult int) int {
return max(field.ID, fieldResult)
}
func (findLastFieldID) List(_ ListType, elemResult int) int { return elemResult }
func (findLastFieldID) Map(_ MapType, keyResult, valueResult int) int {
return max(keyResult, valueResult)
}
func (findLastFieldID) Primitive(PrimitiveType) int { return 0 }
// IndexParents generates an index of field IDs to their parent field
// IDs. Root fields are not indexed
func IndexParents(schema *Schema) (map[int]int, error) {
indexer := &indexParents{
idToParent: make(map[int]int),
idStack: make([]int, 0),
}
return Visit(schema, indexer)
}
type indexParents struct {
idToParent map[int]int
idStack []int
}
func (i *indexParents) BeforeField(field NestedField) {
i.idStack = append(i.idStack, field.ID)
}
func (i *indexParents) AfterField(field NestedField) {
i.idStack = i.idStack[:len(i.idStack)-1]
}
func (i *indexParents) Schema(schema *Schema, _ map[int]int) map[int]int {
return i.idToParent
}
func (i *indexParents) Struct(st StructType, _ []map[int]int) map[int]int {
var parent int
stackLen := len(i.idStack)