-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmicrogrid_simulator.py
686 lines (545 loc) · 29 KB
/
microgrid_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# -*- coding: utf-8 -*-
"""
Microgrid simulator class. Includes the core of the system dispatch algorithm.
File Contents:
Classes:
Simulator
REBattGenSimulator (inhertis from Simulator)
Standalone functions:
calculate_load_duration
"""
import copy
import numpy as np
import pandas as pd
from copy import deepcopy
from microgrid_system import Generator
from microgrid_system import PV, Tidal, Wave, SimpleLiIonBattery, SimpleMicrogridSystem
from generate_solar_profile import SolarProfileGenerator
from generate_tidal_profile import TidalProfileGenerator
from validation import validate_all_parameters, log_error
# Suppress pandas warnings
pd.options.mode.chained_assignment = None
class Simulator:
"""
Runs the core algorithm of the simulation given one system
configuration and one RE/load profile.
Parameters
----------
load_profile: Pandas series with the load profile for a given
simulation period
system: MicrogridSystem object
location: dictionary with the following keys and value
datatypes:
{'longitude': float, 'latitude': float, 'timezone': string,
'altitude': float}
name: unique simulator name
Methods
----------
get_name: return simulator name
"""
def __init__(self, name, load_profile, system, location, validate=True):
self.name = name
self.load_profile = load_profile
self.system = system
self.location = location
# Validate input parameters
if validate:
args_dict = {'load_profile': load_profile, 'system': system,
'location': location}
validate_all_parameters(args_dict)
def get_name(self):
return self.name
class REBattGenSimulator(Simulator):
"""
Simulates a system with one or more renewable resources, a battery and a backup generator
Parameters
----------
name: unique simulator name
renewable_resources: List of renewable resources in order that they will be dispatched
base_power_profiles: Dictionaries of Pandas series' with a renewable power profile for a 1kW system,
the keys should be the same as the resources from 'renewable_resources', also includes Pandas
series for night profiles if PV is included in the resources
load_profile: Pandas series with the load profile for a given simulation period
system: MicrogridSystem object
location: dictionary with the following keys and value
datatypes:
{'longitude': float, 'latitude': float, 'timezone': string,
'altitude': float}
duration: Timestep duration in seconds
dispatch_strategy: determines the battery dispatch strategy.
Options include:
night_const_batt (constant discharge at night)
night_dynamic_batt (updates the discharge rate based on remaining available
capacity)
available_capacity
generator_buffer: Buffer between chosen generator size and
maximum required power. E.g. a buffer of 1.1 means a
generator has to be sized 10% larger than the maximum power.
Default = 1.1
Methods
----------
scale_power_profiles: Scale power profiles by capacity of each renewable system
calc_dispatch: Runs the battery dispatch algorithm
calc_timestep_dispatch: Calculates battery dispatch for an individual timestep
size_single_generator: Size the generator(s) based on load not met by RE and
batteries, given several different generator models
calc_existing_generator_dispatch: Determines how an existing generator meets the load
and consumes fuel. An additional generator may be added if the existing one cannot
meet the load at all timesteps.
get_load_breakdown: Returns load_breakdown attribute
get_storage_recovery_percent: Returns storage_recovery_percent attribute
get_fuel_used: Returns fuel_used_gal attribute
get_generator_power: Returns generator_power_kW attribute
get_load_duration_df: Returns load_duration+df attribute
get_renewable_avg: Returns mean power of each renewable resource
get_renewable_peak: Returns max power of each renewable resource
get_gen_avg: Returns mean power generator production
get_gen_peak: Returns max power generator production
get_gen_total: Returns total generator production
get_outage_load: Returns total load from the outage period
get_hours_before_gen: Returns the number of hours the microgrid can supply power before the generator is used
get_batt_avg: Returns mean power of battery power supplied to system (excluding 0's and negative values)
get_batt_peak: Returns max power of battery power supplied to system
Calculated Attributes
----------
scaled_power_profiles: Dictionary of renewable power profile scaled to system capacities
soc_at_initial_hour_of_night: Tracks the SOC at the beginning of each night to
determine the nightly battery discharge rate
load_breakdown: The fraction of load met by each component
storage_recovery_percent: The percentage of unused RE that is recovered by the battery
fuel_used_gal: The total fuel used by the generator(s) in gallons
generator_power_kW: The rated power of the chosen generator used to calculate fuel
consumption
generator_obj: The generator object for the chosen generator
dispatch_df: Pandas dataframe containing dispatch info for each timestep.
Includes the columns:
['load', '<re_type>_power', 'battery_soc', 'delta_battery_power',
'excess_<re_type>', 'gen_power', 'load_not_met', 'load_not_met_by_RE']
load_duration_df: Pandas dataframe containing load duration curve, with columns:
[load_bin, num_hours, num_hours_at_or_below]
"""
def __init__(self, name, renewable_resources, base_power_profiles, load_profile,
system, location, duration, dispatch_strategy, generator_buffer=1.1,
validate=True):
self.name = name
self.renewable_resources = renewable_resources
self.base_power_profiles = base_power_profiles
self.scaled_power_profiles = {}
self.load_profile = load_profile
self.system = system
self.location = location
self.duration = duration
self.dispatch_strategy = dispatch_strategy
self.soc_at_initial_hour_of_night = 0
self.generator_buffer = generator_buffer
self.load_breakdown = {}
self.storage_recovery_percent = None
self.fuel_used_gal = None
self.generator_power_kW = None
self.generator_obj = None
self.dispatch_df = None
self.load_duration_df = None
self.night_hours_left = 0
# Validate input parameters
if validate:
args_dict = {'renewable_resources': renewable_resources,
'power_profiles': base_power_profiles,
'load_profile': load_profile,
'system': system,
'location': location, 'duration': duration,
'generator_buffer': generator_buffer,
'dispatch_strategy': dispatch_strategy}
validate_all_parameters(args_dict)
# Check that all profiles have the same index (although the year will differ)
if any([((base_power_profile.index[0].month,
base_power_profile.index[0].day,
base_power_profile.index[0].hour) !=
(self.load_profile.index[0].month,
self.load_profile.index[0].day,
self.load_profile.index[0].hour))
for base_power_profile in base_power_profiles.values()]):
message = 'The RE power, load, and night ' \
'profiles must all have the same index.'
log_error(message)
raise Exception(message)
def scale_power_profiles(self):
""" Scale power profile by capacity of RE system """
# TODO: may want to rethink this to allow for multiple systems of the same resource type
for re_resource in self.renewable_resources:
self.scaled_power_profiles[re_resource] = self.base_power_profiles[re_resource] \
* self.system.components[re_resource].capacity
def calc_dispatch(self):
"""
Runs dispatch algorithm
The dataframe dispatch_df holds the information on the system for each timestep, with
the following columns:
- load: load in kW
- <re_type>_power: AC power produced by each renewable resource in order specified by
renewable_resources minus efficiency and inverter losses
- battery_soc: the battery state of charge at the end of the timestep (as a
fraction)
- delta_battery_power: the amount of power charged or discharged from the battery
minus efficiency and inverter losses
"""
# Create dataframe to hold dispatch info for each timestep
index = self.base_power_profiles[self.renewable_resources[0]].index
self.dispatch_df = pd.DataFrame(index=index,
columns = ['load'] + [f'{re_resource}_power'
for re_resource in self.renewable_resources])
self.dispatch_df['load'] = self.load_profile.values
for re_resource in self.renewable_resources:
self.dispatch_df[f'{re_resource}_power'] = self.scaled_power_profiles[re_resource]
# Include night-time params if using a night-based dispatch strategy
if self.dispatch_strategy == 'available_capacity':
self.dispatch_df['is_night'] = 0
self.dispatch_df['is_first_hour_of_night'] = 0
self.dispatch_df['night_duration'] = 0
else:
self.dispatch_df = pd.concat([self.dispatch_df, self.base_power_profiles['night']], axis=1)
# Calculate battery SOC and power change at each timestep
battery_state_df = pd.DataFrame(list(self.dispatch_df.apply(
lambda x: self.calc_timestep_dispatch(
x['load'], self.renewable_resources,
{re_resource: x[f'{re_resource}_power'] for re_resource in self.renewable_resources},
self.duration, x['is_night'],
x['is_first_hour_of_night'], x['night_duration']),
axis=1).values), columns=['battery_soc', 'delta_battery_power'],
index=self.dispatch_df.index)
self.dispatch_df = pd.concat([self.dispatch_df, battery_state_df], axis=1)
# Calculate battery change in power, soc at each timestep
self.dispatch_df['delta_battery_power'] = \
self.dispatch_df['delta_battery_power'].astype('float')
self.dispatch_df['battery_soc'] = \
self.dispatch_df['battery_soc'].astype('float')
# Calculate how much each RE resource is contributing to load at each timestep
self.dispatch_df['net_load'] = self.dispatch_df['load'].copy(deep=True)
self.dispatch_df['total_RE'] = 0
self.dispatch_df['excess_RE'] = 0
for re_resource in self.renewable_resources:
self.dispatch_df[f'{re_resource}_power_to_load'] = self.dispatch_df.apply(
lambda x: np.min([x[f'{re_resource}_power'], x['net_load']]), axis=1)
self.dispatch_df['net_load'] = self.dispatch_df.apply(
lambda x: np.max([x['net_load'] - x[f'{re_resource}_power'], 0]), axis=1)
self.dispatch_df[f'excess_{re_resource}'] = self.dispatch_df.apply(
lambda x: np.max([x[f'{re_resource}_power'] - x[f'{re_resource}_power_to_load'], 0]),
axis=1)
# self.dispatch_df[f'excess_{re_resource}'] = self.dispatch_df[f'{re_resource}_power'] \
# - self.dispatch_df[f'{re_resource}_power_to_load']
self.dispatch_df['total_RE'] += self.dispatch_df[f'{re_resource}_power']
self.dispatch_df['excess_RE'] += self.dispatch_df[f'excess_{re_resource}']
# Calculate load not met
self.dispatch_df['load_not_met_by_RE'] = self.dispatch_df['net_load']
self.dispatch_df.loc[self.dispatch_df['net_load'] > 0, 'load_not_met_by_RE'] = \
self.dispatch_df.loc[self.dispatch_df['net_load'] > 0, 'net_load'] \
- self.dispatch_df.loc[self.dispatch_df['net_load'] > 0, 'delta_battery_power']
self.dispatch_df.loc[self.dispatch_df['load_not_met_by_RE'] < 0, 'load_not_met_by_RE'] = 0
# Calculate ES recovery percent
# If there is no RE, this will cause a RuntimeWarning, so set to 0 (try/except won't
# catch Warnings)
if len(self.dispatch_df.loc[self.dispatch_df['excess_RE'] > 0]):
self.storage_recovery_percent = \
np.abs(self.dispatch_df.loc[
self.dispatch_df['delta_battery_power'] < 0,
'delta_battery_power'].sum()
/ self.dispatch_df.loc[
self.dispatch_df['excess_RE'] > 0,
'excess_RE'].sum() * 100)
else:
self.storage_recovery_percent = 0
def calc_timestep_dispatch(self, load, resource_order, re_power, duration,
is_night, is_first_hour_of_night,
night_duration):
""" Calculates dispatch for an individual timestep. """
# Get current battery state
initial_soc, voltage, cycles, time_since_last_used = \
self.system.components['battery'].get_state()
# Get net load after each renewable resource is applied
net_load = copy.deepcopy(load)
for re_resource in resource_order:
net_load = net_load - re_power[re_resource]
# Check battery discharge method
if self.dispatch_strategy == 'available_capacity':
night_params = None
else:
# If first hour of night, update soc_at_initial_hour_of_night
if is_first_hour_of_night:
self.soc_at_initial_hour_of_night = deepcopy(initial_soc)
self.night_hours_left = night_duration
elif self.night_hours_left > 0:
self.night_hours_left -= 1
elif is_night and self.night_hours_left <= 0:
message = 'Night-time with no hours left at night: ' \
'night_hours_left {}.'.format(self.night_hours_left)
log_error(message)
raise Exception(message)
night_params = {
'is_night': is_night,
'night_duration': night_duration,
'night_hours_left': self.night_hours_left,
'soc_at_initial_hour_of_night': self.soc_at_initial_hour_of_night
}
# Call battery update model
delta_power = self.system.components['battery'].update_state(
net_load, duration, self.dispatch_strategy, night_params)
# Check for errors
if delta_power is None:
print("Error message: net load: {}, initial soc: {}"
"".format(net_load, initial_soc))
# Return initial SOC and power charged or discharged
return initial_soc, delta_power
def size_single_generator(self, generator_options, validate=True):
"""
Size the generator(s) based on load not met by RE and batteries
and several different generator models.
"""
# Validate input parameters
if validate:
args_dict = {'generator_costs': generator_options}
validate_all_parameters(args_dict)
# Calculate generator usage and fuel required to meet load not met by RE and batteries
# Total rated power (including multiple units together) based on max unmet power
max_power = self.dispatch_df['load_not_met_by_RE'].max()
# Find the smallest generator(s) with sufficient rated power, assumes generators are
# sorted from smallest to largest. If no single generator is large enough, try
# multiple gensets of the same size
gen = None
num_gen = 1
while gen is None:
# Find an appropriately sized generator
best_gen = generator_options[generator_options.index
* num_gen >= max_power
* self.generator_buffer]
# If no single generator is large enough, increase the number of generators
if not len(best_gen):
num_gen += 1
else:
# Create generator object
best_gen = best_gen.iloc[0]
self.generator_power_kW = best_gen.name*num_gen
gen = Generator(existing=False,
rated_power=best_gen.name,
num_units=num_gen,
fuel_curve_model=best_gen[
['1/4 Load (gal/hr)', '1/2 Load (gal/hr)',
'3/4 Load (gal/hr)', 'Full Load (gal/hr)']].to_dict(),
capital_cost=best_gen['Cost (USD)'],
validate=False)
self.generator_obj = gen
# Calculate the load duration and total fuel used
self.dispatch_df['gen_power'] = self.dispatch_df['load_not_met_by_RE']
grouped_load, self.fuel_used_gal = gen.calculate_fuel_consumption(
self.dispatch_df[['gen_power']], self.duration, validate=False)
self.load_duration_df = calculate_load_duration(grouped_load, validate=False)
self.dispatch_df['load_not_met'] = 0
def calc_existing_generator_dispatch(self, generator_options,
validate=True):
"""
If there are existing generators, determine how they meet the load and consume fuel.
Once that is established, update and save how much load is still not met and
calculate some of the metrics based on the how much load the existing generators meet.
Note: This function was optimized for efficiency using the AI Incubator tool
"""
# Validate input parameters
if validate:
args_dict = {'generator_options': generator_options}
validate_all_parameters(args_dict)
# Get info from existing generators
gen_group = self.system.components['generator']
# Sort generators into prime and non-prime
prime_gens = []
non_prime_gens = []
for gen in gen_group.generator_list:
if gen.prime_generator:
for _ in range(gen.num_units):
prime_gens += [gen.copy_and_mod('num_units', 1)]
else:
for _ in range(gen.num_units):
non_prime_gens += [gen.copy_and_mod('num_units', 1)]
# Determine generator order and cumulative power
gen_order = np.append(np.random.permutation(prime_gens), np.random.permutation(non_prime_gens))
gens_power = [gen.rated_power for gen in gen_order]
gen_cumulative_power = np.cumsum(gens_power)
# Determine the number of generators that must be dispatched at each timestep to meet
# load (if possible) and total power dispatched
load_not_met_by_RE = self.dispatch_df['load_not_met_by_RE'].values
gens_available = np.searchsorted(gen_cumulative_power, load_not_met_by_RE, side='left')
gen_cumulative_power = np.append(gen_cumulative_power, [gen_cumulative_power[-1]])
total_power_of_gens_dispatched = gen_cumulative_power[gens_available]
gen_power = np.minimum(load_not_met_by_RE, total_power_of_gens_dispatched)
# Calculate the load met by each generator for fuel calculation
gen_power_dict = {}
gen_0_power_condition = gen_power < gen_cumulative_power[0]
gen_power_dict['gen_0_power'] = np.where(gen_0_power_condition, gen_power, gens_power[0])
for gen_indx in range(1, len(gen_order)):
power_column = f'gen_{gen_indx}_power'
gen_power_dict[power_column] = gens_power[gen_indx]
condition = gen_power < gen_cumulative_power[gen_indx]
gen_power_dict[power_column] = np.where(condition,
gen_power - gen_cumulative_power[gen_indx-1],
gen_power_dict[power_column])
gen_power_dict[power_column] = np.maximum(gen_power_dict[power_column], 0)
# Determine if unmet load can be supplied by generators
self.dispatch_df['gen_power'] = gen_power
self.dispatch_df['load_not_met'] = self.dispatch_df['load_not_met_by_RE'] - self.dispatch_df['gen_power']
# Calculate fuel used by each generator
self.fuel_used_gal = 0
self.fuel_used_gal = sum(
gen_order[gen_indx].calculate_fuel_consumption(
pd.DataFrame(gen_power_dict[f'gen_{gen_indx}_power']), self.duration, validate=False)[1]
for gen_indx in range(len(gens_power)))
self.generator_power_kW = gen_cumulative_power[-1]
def get_load_breakdown(self):
return self.load_breakdown
def get_storage_recovery_percent(self):
return self.storage_recovery_percent
def get_fuel_used(self):
return self.fuel_used_gal
def get_generator_power(self):
return self.generator_power_kW
def get_load_duration_df(self):
return self.load_duration_df
def get_renewable_avg(self):
non_zero_re_power = {}
for re_resource in self.renewable_resources:
non_zero_re_power[re_resource] = self.dispatch_df[self.dispatch_df[f'{re_resource}_power'] != 0]
if len(non_zero_re_power[re_resource] > 0):
non_zero_re_power[re_resource] = non_zero_re_power[re_resource][f'{re_resource}_power'].mean()
else:
non_zero_re_power[re_resource] = 0
return non_zero_re_power
def get_renewable_peak(self):
re_peak = {}
for re_resource in self.renewable_resources:
re_peak[re_resource] = self.dispatch_df[f'{re_resource}_power'].max()
return re_peak
def get_gen_avg(self):
non_zero_gen_power = self.dispatch_df[self.dispatch_df['gen_power'] != 0]
if len(non_zero_gen_power) > 0:
return non_zero_gen_power['gen_power'].mean()
else:
return 0
def get_gen_peak(self):
return self.dispatch_df['gen_power'].max()
def get_gen_total(self):
non_zero_gen_power = self.dispatch_df[self.dispatch_df['gen_power'] != 0]
if len(non_zero_gen_power) > 0:
return non_zero_gen_power['gen_power'].sum()
else:
return 0
def get_load_not_met(self):
return abs(self.dispatch_df['load_not_met'].sum())
def get_outage_load(self):
return self.dispatch_df['load'].sum()
def get_hours_before_gen(self):
df_temp = self.dispatch_df.copy(deep=True).reset_index()
try:
return df_temp[df_temp['gen_power'] > 0].index[0]
except IndexError:
return len(self.dispatch_df)
def get_batt_avg(self):
greater_than_zero_batt_power = self.dispatch_df[self.dispatch_df['delta_battery_power'] > 0]
if len(greater_than_zero_batt_power) > 0:
return greater_than_zero_batt_power['delta_battery_power'].mean()
else:
return 0
def get_batt_peak(self):
return self.dispatch_df['delta_battery_power'].max()
def calculate_load_duration(grouped_load, validate=True):
"""
Create a load duration curve for a single generator.
Inputs:
grouped_load: dataframe with columns [binned_load, num_hours]
Outputs:
load_duration_df: dataframe with columns
[load_bin, num_hours, num_hours_at_or_below,
num_hours_above, energy_not_met_at_load_level,
energy_not_met_above_load_level, max_power_not_met]
"""
# Validate input parameters
if validate:
args_dict = {'grouped_load': grouped_load}
validate_all_parameters(args_dict)
# Set index as binned_load and fill in missing bins
grouped_load = grouped_load.set_index('binned_load')[['num_hours']]
grouped_load = grouped_load.merge(pd.DataFrame(
index=range(0, grouped_load.index[-1]+1)), left_index=True,
right_index=True, how='right').fillna(0)
# Calculate cumulative hours at or below each load bin
grouped_load['num_hours_at_or_below'] = grouped_load['num_hours'].cumsum()
# Calculate cumulative hours above each load bin (hours not met)
grouped_load['num_hours_above'] = \
grouped_load['num_hours_at_or_below'].max() \
- grouped_load['num_hours_at_or_below']
# Calculate energy not met at each load bin
grouped_load['energy_not_met_at_load_level'] = grouped_load.index \
* grouped_load['num_hours']
grouped_load['energy_not_met_above_load_level'] = \
grouped_load['energy_not_met_at_load_level'].sum() \
- grouped_load['energy_not_met_at_load_level'].cumsum() \
- grouped_load.index * grouped_load['num_hours_above']
# Calculate the maximum power not met at each load bin
grouped_load['max_power_not_met'] = -grouped_load.index + grouped_load.index[-1]
# Divide by the load bin to get max % not met (compared to load bin)
grouped_load['max_percent_not_met'] = grouped_load['max_power_not_met'] \
/ grouped_load.index * 100
return grouped_load
if __name__ == "__main__":
# Used for testing
# Get solar and tidal profiles
# System level
import os
latitude = 46.34
longitude = -119.28
timezone = 'US/Pacific'
num_trials = 200.
length_trials = 14. * 24
spg = SolarProfileGenerator(latitude, longitude, timezone, 0, 0, 0, num_trials, length_trials,
validate=True)
spg.get_power_profiles()
spg.get_night_duration(percent_at_night=0.2, validate=True)
start_datetimes = [profile.index[0] for profile in spg.power_profiles]
tpg = TidalProfileGenerator(latitude, longitude, timezone, num_trials, length_trials,
start_year=1998, end_year=2022)
tpg.get_tidal_data_from_upload()
tpg.extrapolate_tidal_epoch()
tpg.generate_tidal_profiles(start_datetimes)
tpg.get_power_profiles()
# Sample generator options
generator_options = pd.read_excel('data/MCOR Prices.xlsx', sheet_name='generator_costs',
index_col=0)
# Create a sample system
batt = SimpleLiIonBattery(False, 50, 200, validate=True)
pv = PV(False, 200, 0, 0, 0.360, 3, 2, validate=True, pv_tracking='fixed',
pv_racking='ground')
tidal = Tidal(False, 200, 200, validate=True)
gen = Generator(True, 50, 1, {'1/4 Load (gal/hr)': 1.8, '1/2 Load (gal/hr)': 2.9,
'3/4 Load (gal/hr)': 3.8, 'Full Load (gal/hr)': 4.8},
5000, validate=True)
system = SimpleMicrogridSystem('pv_50_tidal_50_batt_50kW_200kWh')
system.add_component(batt, validate=True)
system.add_component(pv, validate=True)
system.add_component(tidal, validate=True)
system.add_component(gen, validate=True)
# Create a simulation object
load_profile = pd.read_csv(os.path.join('data', 'sample_load_profile.csv'),
index_col=0)['Load']
load_profile = load_profile.iloc[4951:4951+336]
renewable_resources = ['mre', 'pv']
base_power_profiles = {'pv': spg.power_profiles[95],
'night': spg.night_profiles[95],
'mre': tpg.power_profiles[95]}
load_profile.index = base_power_profiles['pv'].index
sim = REBattGenSimulator('pv_50_tidal_50_batt_50kW_200kWh',
renewable_resources,
base_power_profiles,
load_profile,
system,
{'longitude': -119.28, 'latitude': 46.34,
'timezone': 'US/Pacific', 'altitude': 0}, 3600,
'night_const_batt', validate=True)
# Run the simulation
sim.scale_power_profiles()
sim.calc_dispatch()
sim.size_single_generator(generator_options, validate=True)
# Plot dispatch
sim.dispatch_df[['load', 'pv_power', 'mre_power', 'delta_battery_power', 'gen_power']].plot()