From 75091c5c96526454031dc9dff889766224422e1d Mon Sep 17 00:00:00 2001 From: Ivan Plyushchenko Date: Tue, 31 Oct 2023 16:41:44 +0200 Subject: [PATCH] Update Vignette.md --- Vignette.md | 20 +++++++++++++------- 1 file changed, 13 insertions(+), 7 deletions(-) diff --git a/Vignette.md b/Vignette.md index 9d8509c..930f13d 100644 --- a/Vignette.md +++ b/Vignette.md @@ -3,10 +3,16 @@ This R Markdown document was provided as an example to reproduce the _OUKS_ code script. Fig. 4 from [article](https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00392) can be reproduced with the following code. Preliminarily download _"xcms after IPO MVI QC-XGB filter repeats annot+filtr LMM adj KEGG.csv"_ and _"8 peaks.csv"_ files into your working directory (for example: "D:/OUKS/"). +For quick access to files: +```r +ds <- as.data.frame(fread("https://raw.githubusercontent.com/plyush1993/OUKS/main/Datasets%20(csv)/8%20peaks.csv")) +ds2 <- as.data.frame(fread("https://raw.githubusercontent.com/plyush1993/OUKS/main/Datasets%20(csv)/xcms%20after%20IPO%20MVI%20QC-XGB%20filter%20repeats%20annot%2Bfiltr%20LMM%20adj%20KEGG.csv")) +``` + ## Prepare environment First, set the folder for the working directory and load the packages. -```{r} +```r setwd("D:/OUKS/") library(data.table) @@ -27,7 +33,7 @@ library(ggsci) ``` ## Load datasets -```{r} +```r ds <- as.data.frame(fread(input = "8 peaks.csv", header=T)) rownames(ds) <- ds[,1] ds <- ds[,-1] @@ -44,7 +50,7 @@ ds2$Label <- as.factor(ds2$Label) ``` ## Plot volcano plot -```{r} +```r ds_log <- as.data.frame(log2(ds2[,-1])) ds_log <- cbind(Label = ds2[,1], ds_log) @@ -74,7 +80,7 @@ f ## HCA plot -```{r} +```r base1 <- ds mtrx1 <- ds[,-1] grp1 <- as.character(base1[,1]) @@ -107,7 +113,7 @@ b ## PCA plot -```{r} +```r base1 <- ds mtrx1 <- ds[,-1] grp1 <- as.character(base1[,1]) @@ -128,7 +134,7 @@ a ## ROC curve -```{r} +```r # start parallel processing fc <- as.numeric(detectCores(logical = T)) cl <- makePSOCKcluster(fc-1) @@ -162,7 +168,7 @@ c ## bootstrap histogram -```{r} +```r # start parallel processing fc <- as.numeric(detectCores(logical = T)) cl <- makePSOCKcluster(fc-1)