forked from annem/ADXL362
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADXL362.cpp
340 lines (274 loc) · 10.5 KB
/
ADXL362.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
Arduino Library for Analog Devices ADXL362 - Micropower 3-axis accelerometer
go to http://www.analog.com/ADXL362 for datasheet
License: CC BY-SA 3.0: Creative Commons Share-alike 3.0. Feel free
to use and abuse this code however you'd like. If you find it useful
please attribute, and SHARE-ALIKE!
Created June 2012
by Anne Mahaffey - hosted on http://annem.github.com/ADXL362
Modified May 2013
by Jonathan Ruiz de Garibay
*/
#include <Arduino.h>
#include <ADXL362.h>
#include <SPI.h>
//#define ADXL362_DEBUG
int16_t slaveSelectPin = 10;
ADXL362::ADXL362() {
}
//
// begin()
// Initial SPI setup, soft reset of device
//
void ADXL362::begin(int16_t chipSelectPin) {
slaveSelectPin = chipSelectPin;
pinMode(slaveSelectPin, OUTPUT);
SPI.begin();
SPI.setDataMode(SPI_MODE0); //CPHA = CPOL = 0 MODE = 0
delay(1000);
// soft reset
SPIwriteOneRegister(0x1F, 0x52); // Write to SOFT RESET, "R"
delay(10);
#ifdef ADXL362_DEBUG
Serial.println("Soft Reset\n");
#endif
}
//
// beginMeasure()
// turn on Measurement mode - required after reset
//
void ADXL362::beginMeasure() {
byte temp = SPIreadOneRegister(0x2D); // read Reg 2D before modifying for measure mode
#ifdef ADXL362_DEBUG
Serial.print( "Setting Measeurement Mode - Reg 2D before = ");
Serial.print(temp);
#endif
// turn on measurement mode
byte tempwrite = temp | 0x02; // turn on measurement bit in Reg 2D
SPIwriteOneRegister(0x2D, tempwrite); // Write to POWER_CTL_REG, Measurement Mode
delay(10);
#ifdef ADXL362_DEBUG
temp = SPIreadOneRegister(0x2D);
Serial.print( ", Reg 2D after = ");
Serial.println(temp);
Serial.println();
#endif
}
//
// readXData(), readYData(), readZData(), readTemp()
// Read X, Y, Z, and Temp registers
//
int16_t ADXL362::readXData(){
int16_t XDATA = SPIreadTwoRegisters(0x0E);
#ifdef ADXL362_DEBUG
Serial.print("XDATA = ");
Serial.println(XDATA);
#endif
return XDATA;
}
int16_t ADXL362::readYData(){
int16_t YDATA = SPIreadTwoRegisters(0x10);
#ifdef ADXL362_DEBUG
Serial.print("\tYDATA = ");
Serial.println(YDATA);
#endif
return YDATA;
}
int16_t ADXL362::readZData(){
int16_t ZDATA = SPIreadTwoRegisters(0x12);
#ifdef ADXL362_DEBUG
Serial.print("\tZDATA = ");
Serial.println(ZDATA);
#endif
return ZDATA;
}
int16_t ADXL362::readTemp(){
int16_t TEMP = SPIreadTwoRegisters(0x14);
#ifdef ADXL362_DEBUG
Serial.print("\tTEMP = ");
Serial.println(TEMP);
#endif
return TEMP;
}
void ADXL362::readXYZTData(int16_t &XData, int16_t &YData, int16_t &ZData, int16_t &Temperature){
// burst SPI read
// A burst read of all three axis is required to guarantee all measurements correspond to same sample time
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0B); // read instruction
SPI.transfer(0x0E); // Start at XData Reg
XData = SPI.transfer(0x00);
XData = XData + (SPI.transfer(0x00) << 8);
YData = SPI.transfer(0x00);
YData = YData + (SPI.transfer(0x00) << 8);
ZData = SPI.transfer(0x00);
ZData = ZData + (SPI.transfer(0x00) << 8);
Temperature = SPI.transfer(0x00);
Temperature = Temperature + (SPI.transfer(0x00) << 8);
digitalWrite(slaveSelectPin, HIGH);
#ifdef ADXL362_DEBUG
Serial.print("XDATA = "); Serial.print(XData);
Serial.print("\tYDATA = "); Serial.print(YData);
Serial.print("\tZDATA = "); Serial.print(ZData);
Serial.print("\tTemperature = "); Serial.println(Temperature);
#endif
}
float ADXL362::readXOrientation()
{
float XOrientation = atan2(readXData(), readYData()) / 0.0174533;
#ifdef ADXL362_DEBUG
Serial.print("\tXOrientation = ");
Serial.println(XOrientation);
#endif
return XOrientation;
}
float ADXL362::readYOrientation()
{
float YOrientation = atan(readYData() / sqrt(pow(readXData(),2) + pow(readZData(), 2))) / 0.0174533;
#ifdef ADXL362_DEBUG
Serial.print("\tXOrientation = ");
Serial.println(YOrientation);
#endif
return YOrientation;
}
float ADXL362::readZOrientation()
{
float ZOrientation = atan(readZData() / sqrt(pow(readXData(),2) + pow(readYData(), 2))) / 0.0174533;
#ifdef ADXL362_DEBUG
Serial.print("\tZOrientation = ");
Serial.println(ZOrientation);
#endif
return ZOrientation;
}
float ADXL362::readXYZOrientation(float &XOrientation, float &YOrientation, float &ZOrientation)
{
digitalWrite(slaveSelectPin, LOW);
XOrientation = readXOrientation();
YOrientation = readYOrientation();
ZOrientation = readZOrientation();
digitalWrite(slaveSelectPin, HIGH);
}
void ADXL362::setupDCActivityInterrupt(int16_t threshold, byte time){
// Setup motion and time thresholds
SPIwriteTwoRegisters(0x20, threshold);
SPIwriteOneRegister(0x22, time);
// turn on activity interrupt
byte ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Read current reg value
ACT_INACT_CTL_Reg = ACT_INACT_CTL_Reg | (0x01); // turn on bit 1, ACT_EN
SPIwriteOneRegister(0x27, ACT_INACT_CTL_Reg); // Write new reg value
ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Verify properly written
#ifdef ADXL362_DEBUG
Serial.print("DC Activity Threshold set to "); Serial.print(SPIreadTwoRegisters(0x20));
Serial.print(", Time threshold set to "); Serial.print(SPIreadOneRegister(0x22));
Serial.print(", ACT_INACT_CTL Register is "); Serial.println(ACT_INACT_CTL_Reg, HEX);
#endif
}
void ADXL362::setupACActivityInterrupt(int16_t threshold, byte time){
// Setup motion and time thresholds
SPIwriteTwoRegisters(0x20, threshold);
SPIwriteOneRegister(0x22, time);
// turn on activity interrupt
byte ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Read current reg value
ACT_INACT_CTL_Reg = ACT_INACT_CTL_Reg | (0x03); // turn on bit 2 and 1, ACT_AC_DCB, ACT_EN
SPIwriteOneRegister(0x27, ACT_INACT_CTL_Reg); // Write new reg value
ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Verify properly written
#ifdef ADXL362_DEBUG
Serial.print("AC Activity Threshold set to "); Serial.print(SPIreadTwoRegisters(0x20));
Serial.print(", Time Activity set to "); Serial.print(SPIreadOneRegister(0x22));
Serial.print(", ACT_INACT_CTL Register is "); Serial.println(ACT_INACT_CTL_Reg, HEX);
#endif
}
void ADXL362::setupDCInactivityInterrupt(int16_t threshold, int16_t time){
// Setup motion and time thresholds
SPIwriteTwoRegisters(0x23, threshold);
SPIwriteTwoRegisters(0x25, time);
// turn on inactivity interrupt
byte ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Read current reg value
ACT_INACT_CTL_Reg = ACT_INACT_CTL_Reg | (0x04); // turn on bit 3, INACT_EN
SPIwriteOneRegister(0x27, ACT_INACT_CTL_Reg); // Write new reg value
ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Verify properly written
#ifdef ADXL362_DEBUG
Serial.print("DC Inactivity Threshold set to "); Serial.print(SPIreadTwoRegisters(0x23));
Serial.print(", Time Inactivity set to "); Serial.print(SPIreadTwoRegisters(0x25));
Serial.print(", ACT_INACT_CTL Register is "); Serial.println(ACT_INACT_CTL_Reg, HEX);
#endif
}
void ADXL362::setupACInactivityInterrupt(int16_t threshold, int16_t time){
// Setup motion and time thresholds
SPIwriteTwoRegisters(0x23, threshold);
SPIwriteTwoRegisters(0x25, time);
// turn on inactivity interrupt
byte ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Read current reg value
ACT_INACT_CTL_Reg = ACT_INACT_CTL_Reg | (0x0C); // turn on bit 3 and 4, INACT_AC_DCB, INACT_EN
SPIwriteOneRegister(0x27, ACT_INACT_CTL_Reg); // Write new reg value
ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); // Verify properly written
#ifdef ADXL362_DEBUG
Serial.print("AC Inactivity Threshold set to "); Serial.print(SPIreadTwoRegisters(0x23));
Serial.print(", Time Inactivity set to "); Serial.print(SPIreadTwoRegisters(0x25));
Serial.print(", ACT_INACT_CTL Register is "); Serial.println(ACT_INACT_CTL_Reg, HEX);
#endif
}
void ADXL362::checkAllControlRegs(){
//byte filterCntlReg = SPIreadOneRegister(0x2C);
//byte ODR = filterCntlReg & 0x07; Serial.print("ODR = "); Serial.println(ODR, HEX);
//byte ACT_INACT_CTL_Reg = SPIreadOneRegister(0x27); Serial.print("ACT_INACT_CTL_Reg = "); Serial.println(ACT_INACT_CTL_Reg, HEX);
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0B); // read instruction
SPI.transfer(0x20); // Start burst read at Reg 20
#ifdef ADXL362_DEBUG
Serial.println("Start Burst Read of all Control Regs - Library version 6-5-2014:");
Serial.print("Reg 20 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 21 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 22 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 23 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 24 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 25 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 26 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 27 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 28 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 29 = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 2A = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 2B = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 2C = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 2D = "); Serial.println(SPI.transfer(0x00), HEX);
Serial.print("Reg 2E = "); Serial.println(SPI.transfer(0x00), HEX);
#endif
digitalWrite(slaveSelectPin, HIGH);
}
// Basic SPI routines to simplify code
// read and write one register
byte ADXL362::SPIreadOneRegister(byte regAddress){
byte regValue = 0;
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0B); // read instruction
SPI.transfer(regAddress);
regValue = SPI.transfer(0x00);
digitalWrite(slaveSelectPin, HIGH);
return regValue;
}
void ADXL362::SPIwriteOneRegister(byte regAddress, byte regValue){
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0A); // write instruction
SPI.transfer(regAddress);
SPI.transfer(regValue);
digitalWrite(slaveSelectPin, HIGH);
}
int16_t ADXL362::SPIreadTwoRegisters(byte regAddress){
int16_t twoRegValue = 0;
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0B); // read instruction
SPI.transfer(regAddress);
twoRegValue = SPI.transfer(0x00);
twoRegValue = twoRegValue + (SPI.transfer(0x00) << 8);
digitalWrite(slaveSelectPin, HIGH);
return twoRegValue;
}
void ADXL362::SPIwriteTwoRegisters(byte regAddress, int16_t twoRegValue){
byte twoRegValueH = twoRegValue >> 8;
byte twoRegValueL = twoRegValue;
digitalWrite(slaveSelectPin, LOW);
SPI.transfer(0x0A); // write instruction
SPI.transfer(regAddress);
SPI.transfer(twoRegValueL);
SPI.transfer(twoRegValueH);
digitalWrite(slaveSelectPin, HIGH);
}