forked from xdit-project/xDiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
66 lines (50 loc) · 2.07 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
set -x
export PYTHONPATH=$PWD:$PYTHONPATH
# Select the model type
export MODEL_TYPE="Flux"
# Configuration for different model types
# script, model_id, inference_step
declare -A MODEL_CONFIGS=(
["Pixart-alpha"]="pixartalpha_example.py /cfs/dit/PixArt-XL-2-1024-MS 20"
["Pixart-sigma"]="pixartsigma_example.py /cfs/dit/PixArt-Sigma-XL-2-2K-MS 20"
["Sd3"]="sd3_example.py /cfs/dit/stable-diffusion-3-medium-diffusers 20"
["Flux"]="flux_example.py /cfs/dit/FLUX.1-dev 28"
["HunyuanDiT"]="hunyuandit_example.py /cfs/dit/HunyuanDiT-v1.2-Diffusers 50"
)
if [[ -v MODEL_CONFIGS[$MODEL_TYPE] ]]; then
IFS=' ' read -r SCRIPT MODEL_ID INFERENCE_STEP <<< "${MODEL_CONFIGS[$MODEL_TYPE]}"
export SCRIPT MODEL_ID INFERENCE_STEP
else
echo "Invalid MODEL_TYPE: $MODEL_TYPE"
exit 1
fi
mkdir -p ./results
# task args
TASK_ARGS="--height 1024 --width 1024 --no_use_resolution_binning"
# On 8 gpus, pp=2, ulysses=2, ring=1, cfg_parallel=2 (split batch)
N_GPUS=8
PARALLEL_ARGS="--pipefusion_parallel_degree 2 --ulysses_degree 2 --ring_degree 2"
# CFG_ARGS="--use_cfg_parallel"
# By default, num_pipeline_patch = pipefusion_degree, and you can tune this parameter to achieve optimal performance.
# PIPEFUSION_ARGS="--num_pipeline_patch 8 "
# For high-resolution images, we use the latent output type to avoid runing the vae module. Used for measuring speed.
# OUTPUT_ARGS="--output_type latent"
# PARALLLEL_VAE="--use_parallel_vae"
# Another compile option is `--use_onediff` which will use onediff's compiler.
# COMPILE_FLAG="--use_torch_compile"
# Use this flag to quantize the T5 text encoder, which could reduce the memory usage and have no effect on the result quality.
# QUANTIZE_FLAG="--use_fp8_t5_encoder"
# export CUDA_VISIBLE_DEVICES=4,5,6,7
torchrun --nproc_per_node=$N_GPUS ./examples/$SCRIPT \
--model $MODEL_ID \
$PARALLEL_ARGS \
$TASK_ARGS \
$PIPEFUSION_ARGS \
$OUTPUT_ARGS \
--num_inference_steps $INFERENCE_STEP \
--warmup_steps 1 \
--prompt "brown dog laying on the ground with a metal bowl in front of him." \
$CFG_ARGS \
$PARALLLEL_VAE \
$COMPILE_FLAG \
$QUANTIZE_FLAG \