forked from xdit-project/xDiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconsisid_usp_example.py
256 lines (218 loc) · 10.5 KB
/
consisid_usp_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import functools
from typing import Optional, Tuple, Any, Dict
import logging
import os
import time
import torch
from diffusers import DiffusionPipeline, ConsisIDPipeline
from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
from xfuser import xFuserArgs
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import (
get_world_group,
get_runtime_state,
get_classifier_free_guidance_world_size,
get_classifier_free_guidance_rank,
get_cfg_group,
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
get_sp_group,
is_dp_last_group,
initialize_runtime_state,
get_pipeline_parallel_world_size,
)
from xfuser.model_executor.layers.attention_processor import xFuserConsisIDAttnProcessor2_0
def parallelize_transformer(pipe: DiffusionPipeline):
transformer = pipe.transformer
original_forward = transformer.forward
@functools.wraps(transformer.__class__.forward)
def new_forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: torch.LongTensor = None,
timestep_cond: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
id_cond: Optional[torch.Tensor] = None,
id_vit_hidden: Optional[torch.Tensor] = None,
**kwargs,
):
if encoder_hidden_states.shape[-2] % get_sequence_parallel_world_size() != 0:
get_runtime_state().split_text_embed_in_sp = False
else:
get_runtime_state().split_text_embed_in_sp = True
temporal_size = hidden_states.shape[1]
if isinstance(timestep, torch.Tensor) and timestep.ndim != 0 and timestep.shape[0] == hidden_states.shape[0]:
timestep = torch.chunk(timestep, get_classifier_free_guidance_world_size(),dim=0)[get_classifier_free_guidance_rank()]
hidden_states = torch.chunk(hidden_states, get_classifier_free_guidance_world_size(),dim=0)[get_classifier_free_guidance_rank()]
hidden_states = torch.chunk(hidden_states, get_sequence_parallel_world_size(),dim=-2)[get_sequence_parallel_rank()]
encoder_hidden_states = torch.chunk(encoder_hidden_states, get_classifier_free_guidance_world_size(),dim=0)[get_classifier_free_guidance_rank()]
if get_runtime_state().split_text_embed_in_sp:
encoder_hidden_states = torch.chunk(encoder_hidden_states, get_sequence_parallel_world_size(),dim=-2)[get_sequence_parallel_rank()]
if image_rotary_emb is not None:
freqs_cos, freqs_sin = image_rotary_emb
def get_rotary_emb_chunk(freqs):
dim_thw = freqs.shape[-1]
freqs = freqs.reshape(temporal_size, -1, dim_thw)
freqs = torch.chunk(freqs, get_sequence_parallel_world_size(),dim=-2)[get_sequence_parallel_rank()]
freqs = freqs.reshape(-1, dim_thw)
return freqs
freqs_cos = get_rotary_emb_chunk(freqs_cos)
freqs_sin = get_rotary_emb_chunk(freqs_sin)
image_rotary_emb = (freqs_cos, freqs_sin)
for block in transformer.transformer_blocks:
block.attn1.processor = xFuserConsisIDAttnProcessor2_0()
output = original_forward(
hidden_states,
encoder_hidden_states,
timestep=timestep,
timestep_cond=timestep_cond,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
id_cond=id_cond,
id_vit_hidden=id_vit_hidden,
**kwargs,
)
return_dict = not isinstance(output, tuple)
sample = output[0]
sample = get_sp_group().all_gather(sample, dim=-2)
sample = get_cfg_group().all_gather(sample, dim=0)
if return_dict:
return output.__class__(sample, *output[1:])
return (sample, *output[1:])
new_forward = new_forward.__get__(transformer)
transformer.forward = new_forward
original_patch_embed_forward = transformer.patch_embed.forward
@functools.wraps(transformer.patch_embed.__class__.forward)
def new_patch_embed(
self, text_embeds: torch.Tensor, image_embeds: torch.Tensor
):
text_embeds = get_sp_group().all_gather(text_embeds.contiguous(), dim=-2)
image_embeds = get_sp_group().all_gather(image_embeds.contiguous(), dim=-2)
batch, num_frames, channels, height, width = image_embeds.shape
text_len = text_embeds.shape[-2]
output = original_patch_embed_forward(text_embeds, image_embeds)
text_embeds = output[:,:text_len,:]
image_embeds = output[:,text_len:,:].reshape(batch, num_frames, -1, output.shape[-1])
text_embeds = torch.chunk(text_embeds, get_sequence_parallel_world_size(),dim=-2)[get_sequence_parallel_rank()]
image_embeds = torch.chunk(image_embeds, get_sequence_parallel_world_size(),dim=-2)[get_sequence_parallel_rank()]
image_embeds = image_embeds.reshape(batch, -1, image_embeds.shape[-1])
return torch.cat([text_embeds, image_embeds], dim=1)
new_patch_embed = new_patch_embed.__get__(transformer.patch_embed)
transformer.patch_embed.forward = new_patch_embed
def main():
parser = FlexibleArgumentParser(description="xFuser Arguments")
args = xFuserArgs.add_cli_args(parser).parse_args()
engine_args = xFuserArgs.from_cli_args(args)
engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
assert engine_args.pipefusion_parallel_degree == 1, "This script does not support PipeFusion."
assert engine_args.use_parallel_vae is False, "parallel VAE not implemented for ConsisID"
# 1. Prepare all the Checkpoints
if not os.path.exists(engine_config.model_config.model):
print("Base Model not found, downloading from Hugging Face...")
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir=engine_config.model_config.model)
else:
print(f"Base Model already exists in {engine_config.model_config.model}, skipping download.")
# 2. Load Pipeline
device = torch.device(f"cuda:{local_rank}")
pipe = ConsisIDPipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
torch_dtype=torch.bfloat16,
)
if args.enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload(gpu_id=local_rank)
logging.info(f"rank {local_rank} sequential CPU offload enabled")
elif args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload(gpu_id=local_rank)
logging.info(f"rank {local_rank} model CPU offload enabled")
else:
pipe = pipe.to(device)
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = (
prepare_face_models(engine_config.model_config.model, device=device, dtype=torch.bfloat16)
)
if args.enable_tiling:
pipe.vae.enable_tiling()
if args.enable_slicing:
pipe.vae.enable_slicing()
parameter_peak_memory = torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}")
initialize_runtime_state(pipe, engine_config)
get_runtime_state().set_video_input_parameters(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
batch_size=1,
num_inference_steps=input_config.num_inference_steps,
split_text_embed_in_sp=get_pipeline_parallel_world_size() == 1,
)
parallelize_transformer(pipe)
# 3. Prepare Model Input
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(
face_helper_1,
face_clip_model,
face_helper_2,
eva_transform_mean,
eva_transform_std,
face_main_model,
device,
torch.bfloat16,
input_config.img_file_path,
is_align_face=True,
)
# 4. Generate Identity-Preserving Video
if engine_config.runtime_config.use_torch_compile:
torch._inductor.config.reorder_for_compute_comm_overlap = True
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs")
# one step to warmup the torch compiler
output = pipe(
image=image,
prompt=input_config.prompt[0],
id_vit_hidden=id_vit_hidden,
id_cond=id_cond,
kps_cond=face_kps,
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
num_inference_steps=1,
generator=torch.Generator(device="cuda").manual_seed(input_config.seed),
guidance_scale=6.0,
use_dynamic_cfg=False,
).frames[0]
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
output = pipe(
image=image,
prompt=input_config.prompt[0],
id_vit_hidden=id_vit_hidden,
id_cond=id_cond,
kps_cond=face_kps,
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
num_inference_steps=input_config.num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(input_config.seed),
guidance_scale=6.0,
use_dynamic_cfg=False,
).frames[0]
end_time = time.time()
elapsed_time = end_time - start_time
peak_memory = torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}")
parallel_info = (
f"dp{engine_args.data_parallel_degree}_cfg{engine_config.parallel_config.cfg_degree}_"
f"ulysses{engine_args.ulysses_degree}_ring{engine_args.ring_degree}_"
f"tp{engine_args.tensor_parallel_degree}_"
f"pp{engine_args.pipefusion_parallel_degree}_patch{engine_args.num_pipeline_patch}"
)
if is_dp_last_group():
resolution = f"{input_config.width}x{input_config.height}"
output_filename = f"results/consisid_{parallel_info}_{resolution}.mp4"
export_to_video(output, output_filename, fps=8)
print(f"output saved to {output_filename}")
if get_world_group().rank == get_world_group().world_size - 1:
print(f"epoch time: {elapsed_time:.2f} sec, parameter memory: {parameter_peak_memory/1e9:.2f} GB, memory: {peak_memory/1e9} GB")
get_runtime_state().destory_distributed_env()
if __name__ == "__main__":
main()