-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
150 lines (121 loc) · 5.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import torch
import wandb
import pickle
import argparse
import torch.distributed as dist
from models import Transformer, ContrastiveProjectors
from dataset import TCGADataset, generate_splits
import torch.multiprocessing as mp
from torch.nn.parallel import DataParallel
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from torch.utils.data import DataLoader
from transformers.optimization import get_cosine_schedule_with_warmup
from utils import yaml_config_hook, convert_model, train
import warnings
def main(gpu, args, wandb_logger):
if gpu != 0:
wandb_logger = None
rank = args.nr * args.gpus + gpu
args.rank = rank
args.device = rank
if args.world_size > 1 and not args.dataparallel:
dist.init_process_group("nccl", rank=rank, world_size=args.world_size)
torch.cuda.set_device(rank)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# load data file
data_cv = pickle.load(open(args.data_path, 'rb'))
data_cv_split = data_cv['splits'][args.fold]
gene_names = data_cv['data_pd'].columns[-80:]
# training set
train_dataset = TCGADataset(args, data_cv_split, gene_names, split='train')
step_per_epoch = len(train_dataset) // (args.batch_size * args.world_size)
# set sampler for parallel training
if args.world_size > 1 and not args.dataparallel:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=args.world_size, rank=rank, shuffle=True
)
else:
train_sampler = None
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
drop_last=True,
num_workers=args.workers,
sampler=train_sampler,
pin_memory=True,
)
if rank == 0:
test_dataset = TCGADataset(args, data_cv_split, gene_names, split='test')
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
else:
test_loader = None
loaders = (train_loader, test_loader)
num_classes = train_dataset.num_classes
# model init
model = Transformer(image_size=args.image_size, num_classes=num_classes,
pretrained=args.pretrained, patch_size=args.patch_size)
global_projectors = ContrastiveProjectors(model.config.hidden_size, args.dis_gene, teacher=True)
local_projectors = ContrastiveProjectors(model.config.hidden_size, args.dis_gene, teacher=False)
model = model.cuda()
global_projectors = global_projectors.cuda()
local_projectors = local_projectors.cuda()
optim_params = [{'params': model.parameters()}, {'params': local_projectors.parameters(), 'lr_mult': 10}]
optimizer = torch.optim.AdamW(optim_params, lr=args.lr, weight_decay=args.weight_decay)
scheduler = get_cosine_schedule_with_warmup(optimizer, args.warmup_epochs * step_per_epoch, args.epochs * step_per_epoch)
if args.dataparallel:
model = convert_model(model)
local_projectors = convert_model(local_projectors)
model = DataParallel(model, device_ids=[int(x) for x in args.visible_gpus.split(",")])
local_projectors = DataParallel(local_projectors, device_ids=[int(x) for x in args.visible_gpus.split(",")])
else:
if args.world_size > 1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
local_projectors = torch.nn.SyncBatchNorm.convert_sync_batchnorm(local_projectors)
model = DDP(model, device_ids=[gpu], find_unused_parameters=True, broadcast_buffers=False)
local_projectors = DDP(local_projectors, device_ids=[gpu], find_unused_parameters=True, broadcast_buffers=False)
models = (model, global_projectors, local_projectors)
train(loaders, models, optimizer, scheduler, args, wandb_logger)
if __name__ == '__main__':
# args
parser = argparse.ArgumentParser()
yaml_config = yaml_config_hook("./config/configs.yaml")
for k, v in yaml_config.items():
parser.add_argument(f"--{k}", default=v, type=type(v))
parser.add_argument('--debug', action="store_true", help='debug mode(disable wandb)')
args = parser.parse_args()
args.world_size = args.gpus * args.nodes
# split the dataset based on gbmlgg15cv_all_st_0_0_0.pkl provided by pathomics
# no need to redo if you have my_split_dropGradeNaN.pkl in the dataset folder
# generate_splits(args.data_path, args.seed, subset=args.split)
# Master address for distributed data parallel
os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpus
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'DETAIL'
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
# check checkpoints path
if not os.path.exists(args.checkpoints):
os.makedirs(args.checkpoints)
# init wandb
if not args.debug:
wandb.login(key="YOUR WANDB KEY HERE")
config = dict()
for k, v in yaml_config.items():
config[k] = v
wandb_logger = wandb.init(
project="MCL_{:s}".format(args.dataset),
config=config
)
else:
wandb_logger = None
if args.world_size > 1 and not args.dataparallel:
print(
f"Training with {args.world_size} GPUS, waiting until all processes join before starting training"
)
mp.spawn(main, args=(args, wandb_logger,), nprocs=args.world_size, join=True)
else:
main(0, args, wandb_logger)