-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathETS3.m
802 lines (707 loc) · 30.2 KB
/
ETS3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
%ETS3 Elementary transform sequence in 3D
%
% This class and package allows experimentation with sequences of spatial
% transformations in 3D.
%
% import +ETS3.*
% L1 = 0; L2 = -0.2337; L3 = 0.4318; L4 = 0.0203; L5 = 0.0837; L6 = 0.4318;
% E3 = Tz(L1) * Rz('q1') * Ry('q2') * Ty(L2) * Tz(L3) * Ry('q3') * Tx(L4) * Ty(L5) * Tz(L6)
%
% Operation methods::
% fkine forward kinematics
% jacob0 geometric jacobian
%
% Information methods::
% isjoint test if transform is a joint
% njoints the number of joint variables
% structure a string listing the joint types
%
% Display methods::
% display display value as a string
% plot graphically display the sequence as a robot
% teach graphically display as robot and allow user control
%
% Conversion methods::
% char convert to string
% string convert to string with symbolic variables
%
% Operators::
% * compound two elementary transforms
% + compound two elementary transforms
%
% Notes::
% - The sequence is an array of objects of superclass ETS3, but with
% distinct subclasses: Rx, Ry, Rz, Tx, Ty, Tz.
% - Use the command 'clear imports' after using ETS2.
%
% See also ETS2.
% Copyright 2022-2023 Peter Corke, Witold Jachimczyk, Remo Pillat
classdef ETS3
properties
what % type of transform (string): Rx, Ry, etc
param % the constant numerical parameter (if not joint)
qvar % the integer joint index 1..N (if joint), else NaN
qlim % for prismatic joint, a 2 vector [min,max]
end
methods
function obj = ETS3(what, x, varargin)
%ETS3.ETS3 Create an ETS3 object
%
% E = ETS3(W, V) is a new ETS3 object that defines an elementary transform where
% W is 'Rx', 'Ry', 'Rz', 'Tx', 'Ty' or 'Tz' and V is the paramter for the transform. If V is a string
% of the form 'qN' where N is an integer then the transform is considered
% to be a joint and the parameter is ignored. Otherwise the transform is a constant.
%
% E = ETS3(E1) is a new ETS3 object that is a clone of the ETS3 object E1.
%
% See also ETS2.Rz, ETS2.Tx, ETS2.Ty.
% if nargin > 0
% disp(['ETS3 constructing ', what]);
% else
% disp('ETS3 constructor: no args');
% end
opt.qlim = [];
opt = tb_optparse(opt, varargin);
obj.qvar = NaN;
obj.param = 0;
if ~isempty(opt.qlim)
assert(length(opt.qlim) == 2, 'ETS2: qlim must be a 2-vector');
end
obj.qlim = opt.qlim;
if nargin > 1
if isa(x, 'ETS3')
% clone it
obj.what = x.what;
obj.qvar = x.qvar;
obj.param = x.param;
obj.qlim = x.qlim;
else
assert(ismember(what, {'Tx','Ty','Tz','Rx','Ry','Rz'}), 'ETS3: invalid transform type given');
if ischar(x)
% create a new one
obj.qvar = str2double(x(2:end));
else
obj.param = x;
end
obj.what = what;
end
end
end
function r = fkine(ets, q, varargin)
%ETS3.fkine Forward kinematics
%
% ETS.fkine(Q, OPTIONS) is the forward kinematics, the pose of the end of the
% sequence as an se3 object. Q (1xN) is a vector of joint variables.
%
% ETS.fkine(Q, N, OPTIONS) as above but process only the first N elements
% of the transform sequence.
%
% Options::
% 'deg' Angles are given in degrees.
r = eye(4);
opt.deg = false;
[opt,args] = tb_optparse(opt, varargin);
if opt.deg
opt.deg = pi/180;
else
opt.deg = 1;
end
n = length(ets);
if ~isempty(args) && isreal(args{1})
n = args{1};
end
assert(n>0 && n <= length(ets), 'RTB:ETS2:badarg', 'bad value of n given');
for i=1:n
e = ets(i);
if e.isjoint
v = q(e.qvar);
else
v = e.param;
end
switch e.what
case 'Tx'
r = r * trvec2tform([v, 0, 0]);
case 'Ty'
r = r * trvec2tform([0, v, 0]);
case 'Tz'
r = r * trvec2tform([0, 0, v]);
case 'Rx'
r = r * eul2tform([v*opt.deg 0 0], "xyz");
case 'Ry'
r = r * eul2tform([0 v*opt.deg 0], "xyz");
case 'Rz'
r = r * eul2tform([0 0 v*opt.deg], "xyz");
end
end
if isa(q, 'sym')
r = simplify(r); % simplify it if symbolic
end
end
function b = isjoint(ets)
%ETS3.isjoint Test if transform is a joint
%
% E.isjoint is true if the transform element is a joint, that is, its
% parameter is of the form 'qN'.
b = ~isnan(ets.qvar);
end
function v = isprismatic(ets)
%ETS3.isprismatic Test if transform is prismatic joint
%
% E.isprismatic is true if the transform element is a joint, that is, its
% parameter is of the form 'qN' and it controls a translation.
v = isjoint(ets) && (ets.what(1) == 'T');
end
function k = find(ets, j)
%ETS3.find Find joints in transform sequence
%
% E.find(J) is the index in the transform sequence ETS(1xN) corresponding
% to the J'th joint.
[~,k] = find([ets.qvar] == j);
end
function n = njoints(ets)
%ETS3.njoints Number of joints in transform sequence
%
% E.njoints is the number of joints in the transform sequence.
%
% See also ETS2.n.
n = max([ets.qvar]);
end
function v = n(ets)
%ETS3.n Number of joints in transform sequence
%
% E.njoints is the number of joints in the transform sequence.
%
% Notes::
% - Is a wrapper on njoints, for compatibility with SerialLink object.
%
% See also ETS3.n.
v = ets.njoints;
end
function s = string(ets)
%ETS3.string Convert to string with symbolic variables
%
% E.string is a string representation of the transform sequence where
% non-joint parameters have symbolic names L1, L2, L3 etc.
%
% See also trchain.
constant = 1;
for i = 1:length(ets)
e = ets(i);
if e.isjoint
term = sprintf('%s(q%d)', e.what, e.qvar);
else
term = sprintf('%s(L%d)', e.what, constant);
constant = constant + 1;
end
if i == 1
s = term;
else
s = [s ' ' term]; %#ok<AGROW>
end
end
end
function out = mtimes(ets1, ets2)
%ETS3.mtimes Compound transforms
%
% E1 * E2 is a sequence of two elementary transform.
%
% See also ETS3.plus.
assert( isa(ets1,'ETS3') && isa(ets2,'ETS3'), 'ETS3: both operands must be of type ETS3, perhaps run ''clear import'', and start over');
out = [ets1 ets2];
end
function out = plus(ets1, ets2)
%ETS3.plus Compound transforms
%
% E1 + E2 is a sequence of two elementary transform.
%
% See also ETS3.mtimes.
assert( isa(ets1,'ETS3') && isa(ets2,'ETS3'), 'ETS3: both operands must be of type ETS3, perhaps run ''clear import'', and start over');
out = [ets1 ets2];
end
function s = structure(ets)
%ETS2.structure Show joint type structure
%
% E.structure is a character array comprising the letters 'R' or 'P' that
% indicates the types of joints in the elementary transform sequence E.
%
% Notes::
% - The string will be E.njoints long.
%
% See also SerialLink.config.
s = '';
for e = ets
if e.qvar > 0
switch e.what(1)
case 'T'
s = [s 'P']; %#ok<AGROW>
case 'R'
s = [s 'R']; %#ok<AGROW>
end
end
end
end
function dis(ets)
%ETS3.disp Display parameters
%
% E.display() displays the transform or transform sequence parameters in
% compact single line format.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is an ETS3 object and the command has no trailing
% semicolon.
%
% See also ETS3.char.
loose = strcmp( get(0, 'FormatSpacing'), 'loose'); %#ok<GETFSP>
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(ets) );
end % display()
function s = char(ets)
%ETS3.char Convert to string
%
% E.char() is a string showing transform parameters in a compact format. If E is a transform sequence (1xN) then
% the string describes each element in sequence in a single line format.
%
% See also ETS3.display.
s = '';
function s = render(z)
if isa(z, 'sym')
s = char(z);
else
s = sprintf('%g', z);
end
end
for e = ets
if e.isjoint
s = [s ' ' sprintf('%s(q%d)', e.what, e.qvar) ]; %#ok<AGROW>
else
s = [s ' ' sprintf('%s(%s)', e.what, render(e.param))]; %#ok<AGROW>
end
end
end
function teach(robot, varargin)
%ETS3.teach Graphical teach pendant
%
% Allow the user to "drive" a graphical robot using a graphical slider
% panel.
%
% ETS.teach(OPTIONS) adds a slider panel to a current ETS plot. If no
% graphical robot exists one is created in a new window.
%
% ETS.teach(Q, OPTIONS) as above but the robot joint angles are set to Q (1xN).
%
% Options::
% 'eul' Display tool orientation in Euler angles (default)
% 'rpy' Display tool orientation in roll/pitch/yaw angles
% 'approach' Display tool orientation as approach vector (z-axis)
% '[no]deg' Display angles in degrees (default true)
%
% GUI::
% - The Quit (red X) button removes the teach panel from the robot plot.
%
% Notes::
% - The currently displayed robots move as the sliders are adjusted.
% - The slider limits are derived from the joint limit properties. If not
% set then for
% - a revolute joint they are assumed to be [-pi, +pi]
% - a prismatic joint they are assumed unknown and an error occurs.
%
% See also ETS3.plot.
%-------------------------------
% parameters for teach panel
%bgcol = [135 206 250]/255; % background color
%height = 0.06; % height of slider rows
%-------------------------------
%---- handle options
opt.deg = true;
opt.orientation = {'rpy', 'eul', 'approach'};
opt.d_2d = false;
opt.callback = [];
opt = tb_optparse(opt, varargin);
if nargin == 1
q = zeros(1,robot.n);
elseif nargin == 2
q = varargin{1};
varargin = {};
else
q = varargin{1};
varargin = varargin{2:end};
end
if isempty(findobj('Tag', 'ETS3'))
robot.plot(q, varargin{:})
end
RTBPlot.install_teach_panel('ETS3', robot, q, opt);
end
function plot(ets, qq, varargin)
%ETS3.plot Graphical display and animation
%
% ETS.plot(Q, options) displays a graphical animation of a robot based on
% the transform sequence. Constant translations are represented as pipe segments, rotational joints as cylinder, and
% prismatic joints as boxes. The robot is displayed at the joint angle Q (1xN), or
% if a matrix (MxN) it is animated as the robot moves along the M-point trajectory.
%
% Options::
% 'workspace', W Size of robot 3D workspace, W = [xmn, xmx ymn ymx zmn zmx]
% 'floorlevel',L Z-coordinate of floor (default -1)
%-
% 'delay',D Delay betwen frames for animation (s)
% 'fps',fps Number of frames per second for display, inverse of 'delay' option
% '[no]loop' Loop over the trajectory forever
% '[no]raise' Autoraise the figure
% 'movie',M Save an animation to the movie M
% 'trail',L Draw a line recording the tip path, with line style L
%-
% 'scale',S Annotation scale factor
% 'zoom',Z Reduce size of auto-computed workspace by Z, makes
% robot look bigger
% 'ortho' Orthographic view
% 'perspective' Perspective view (default)
% 'view',V Specify view V='x', 'y', 'top' or [az el] for side elevations,
% plan view, or general view by azimuth and elevation
% angle.
% 'top' View from the top.
%-
% '[no]shading' Enable Gouraud shading (default true)
% 'lightpos',L Position of the light source (default [0 0 20])
% '[no]name' Display the robot's name
%-
% '[no]wrist' Enable display of wrist coordinate frame
% 'xyz' Wrist axis label is XYZ
% 'noa' Wrist axis label is NOA
% '[no]arrow' Display wrist frame with 3D arrows
%-
% '[no]tiles' Enable tiled floor (default true)
% 'tilesize',S Side length of square tiles on the floor (default 0.2)
% 'tile1color',C Color of even tiles [r g b] (default [0.5 1 0.5] light green)
% 'tile2color',C Color of odd tiles [r g b] (default [1 1 1] white)
%-
% '[no]shadow' Enable display of shadow (default true)
% 'shadowcolor',C Colorspec of shadow, [r g b]
% 'shadowwidth',W Width of shadow line (default 6)
%-
% '[no]jaxes' Enable display of joint axes (default false)
% '[no]jvec' Enable display of joint axis vectors (default false)
% '[no]joints' Enable display of joints
% 'jointcolor',C Colorspec for joint cylinders (default [0.7 0 0])
% 'jointcolor',C Colorspec for joint cylinders (default [0.7 0 0])
% 'jointdiam',D Diameter of joint cylinder in scale units (default 5)
%-
% 'linkcolor',C Colorspec of links (default 'b')
%-
% '[no]base' Enable display of base 'pedestal'
% 'basecolor',C Color of base (default 'k')
% 'basewidth',W Width of base (default 3)
%
% The options come from 3 sources and are processed in order:
% - Cell array of options returned by the function PLOTBOTOPT (if it exists)
% - Cell array of options given by the 'plotopt' option when creating the
% SerialLink object.
% - List of arguments in the command line.
%
% Many boolean options can be enabled or disabled with the 'no' prefix. The
% various option sources can toggle an option, the last value encountered is used.
%
% Graphical annotations and options::
%
% The robot is displayed as a basic stick figure robot with annotations
% such as:
% - shadow on the floor
% - XYZ wrist axes and labels
% - joint cylinders and axes
% which are controlled by options.
%
% The size of the annotations is determined using a simple heuristic from
% the workspace dimensions. This dimension can be changed by setting the
% multiplicative scale factor using the 'mag' option.
%
% Figure behaviour::
%
% - If no figure exists one will be created and the robot drawn in it.
% - If no robot of this name is currently displayed then a robot will
% be drawn in the current figure. If hold is enabled (hold on) then the
% robot will be added to the current figure.
% - If the robot already exists then that graphical model will be found
% and moved.
%
%
% Notes::
% - The options are processed when the figure is first drawn, to make different options come
% into effect it is neccessary to clear the figure.
% - Delay betwen frames can be eliminated by setting option 'delay', 0 or
% 'fps', Inf.
% - The size of the plot volume is determined by a heuristic for an all-revolute
% robot. If a prismatic joint is present the 'workspace' option is
% required. The 'zoom' option can reduce the size of this workspace.
%
% See also ETS3.teach, SerialLink.plot3d.
% heuristic to figure robot size
reach = 0;
for e=ets
switch e.what
case {'Tx', 'Ty', 'Tz'}
if isjoint(e)
reach = reach + e.qlim(2);
else
reach = reach + e.param;
end
end
end
opt = RTBPlot.plot_options([], [varargin 'reach', reach]);
if isempty(findobj('Tag', 'ETS3'))
draw_ets(ets, qq, opt);
end
set(gca, 'Tag', 'RTB.plot');
set(gcf, 'Units', 'Normalized');
get(gcf, 'Position');
if opt.raise
% note this is a very time consuming operation
figure(gcf);
end
if strcmp(opt.projection, 'perspective')
set(gca, 'Projection', 'perspective');
end
if ischar(opt.view)
switch opt.view
case 'top'
view(0, 90);
case 'x'
view(0, 0);
case 'y'
view(90, 0)
otherwise
error('RTB:plot:badarg', 'view must be: x, y, top')
end
elseif isnumeric(opt.view) && length(opt.view) == 2
view(opt.view)
end
% enable mouse-based 3D rotation
rotate3d on
ets.animate(qq);
end
function animate(ets, qq)
assert(numel(qq) == ets.n, 'RTB:ETS3:badarg', 'Joint angles should have %d columns', ets.n,2);
handles = findobj('Tag', 'ETS3');
h = handles.UserData;
opt = h.opt;
ets = h.ets;
for q = qq'
for i=1:length(ets)
e = ets(i);
if i == 1
T = se3;
else
T = se3(ets.fkine(q, i-1, 'setopt', opt));
end
% create the transform for displaying this element (joint cylinder + link)
set(h.element(i), 'Matrix', T.tform);
if isprismatic(e)
switch e.what
case 'Tx'
set(h.pjoint(e.qvar), 'Matrix', diag([q(e.qvar) 1 1 1]));
case 'Ty'
set(h.pjoint(e.qvar), 'Matrix', diag([1 q(e.qvar) 1 1]));
end
end
end
% update the wrist frame
T = se3(ets.fkine(q, 'setopt', opt));
if ~isempty(h.wrist)
plottform(T, 'handle', h.wrist);
end
% render and pause
if opt.delay > 0
pause(opt.delay);
drawnow
end
end
end
function J = jacob0(ets, q, ee)
%jacob0 Compute the geometric Jacobian for the ETS
% JAC = jacob0(ETS, Q) computes
% the geometric Jacobian for the last link in ETS
% under the configuration Q. The Jacobian matrix JAC is of size
% 6xN, where N is the number of degrees of freedom. The
% Jacobian maps joint-space velocity to the Cartesian space
% end-effector velocity relative to the base coordinate frame.
% The first three rows have the rotational dof, the last three rows have
% the translational dof.
%
% JAC = jacob0(ETS, Q, ENDEFFECTORNAME) computes
% the geometric Jacobian for the body ENDEFFECTORNAME
rbt = ets2rbt(ets);
if nargin < 3
% If no end effector is provided, use the last link in the
% RBT.
ee = rbt.Bodies{end}.Name;
end
% Calculate 3D Jacobian
J = rbt.geometricJacobian(q, ee);
end
end
methods (Access=private)
function h_ = draw_ets(ets, q, opt)
clf
axis(opt.workspace);
view(3); % 3D plot
s = opt.scale;
% create an axis
ish = ishold();
if ~ishold
% if hold is off, set the axis dimensions
axis(opt.workspace);
hold on
end
group = hggroup('Tag', 'ETS3');
h.group = group;
% create the graphical joint and link elements
for i=1:length(ets)
e = ets(i);
if opt.debug
fprintf('create graphics for %s\n', e.char );
end
% create a graphical depiction of the transform element
% This is drawn to resemble orthogonal plumbing.
if i == 1
T = se3;
else
T = se3(ets.fkine(q, i-1, 'setopt', opt));
end
% create the transform for displaying this element (joint cylinder + link)
h.element(i) = hgtransform('Tag', sprintf('element%d', i), 'Matrix', T.tform, 'Parent', h.group);
if isjoint(e)
% it's a joint element: revolute or prismatic
switch e.what
case 'Tx'
h.pjoint(e.qvar) = hgtransform('Tag', 'prismatic', 'Parent', h.element(i), 'Matrix', diag([q(e.qvar) 1 1 1]));
RTBPlot.box('x', opt.jointdiam*s, [0 1], opt.pjointcolor, [], 'Parent', h.pjoint(i));
case 'Ty'
h.pjoint(e.qvar) = hgtransform('Tag', 'prismatic', 'Parent', h.element(i), 'Matrix', diag([1 q(e.qvar) 1 1]));
RTBPlot.box('y', opt.jointdiam*s, [0 1], opt.pjointcolor, [], 'Parent', h.pjoint(i));
case 'Tz'
h.pjoint(e.qvar) = hgtransform('Tag', 'prismatic', 'Parent', h.element(i), 'Matrix', diag([1 1 q(e.qvar) 1]));
RTBPlot.box('z', opt.jointdiam*s, [0 1], opt.pjointcolor, [], 'Parent', h.pjoint(i));
case 'Rx'
RTBPlot.cyl('x', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.jointcolor, [], 'Parent', h.element(i));
case 'Ry'
RTBPlot.cyl('y', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.jointcolor, [], 'Parent', h.element(i));
case 'Rz'
RTBPlot.cyl('z', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.jointcolor, [], 'Parent', h.element(i));
end
else
% it's a constant transform
switch e.what
case 'Tx'
RTBPlot.cyl('x', s, [0 e.param], opt.linkcolor, [], 'Parent', h.element(i));
case 'Ty'
RTBPlot.cyl('y', s, [0 e.param], opt.linkcolor, [], 'Parent', h.element(i));
case 'Tz'
RTBPlot.cyl('z', s, [0 e.param], opt.linkcolor, [], 'Parent', h.element(i));
case 'Rx'
RTBPlot.cyl('x', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.linkcolor, [], 'Parent', h.element(i));
case 'Ry'
RTBPlot.cyl('y', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.linkcolor, [], 'Parent', h.element(i));
case 'Rz'
RTBPlot.cyl('z', opt.jointdiam*s, opt.jointlen*s*[-1 1], opt.linkcolor, [], 'Parent', h.element(i));
end
end
assert( ~(opt.jaxes && opt.jvec), 'RTB:ETS3:plot:badopt', 'Can''t specify ''jaxes'' and ''jvec''')
% create the joint axis line
if opt.jaxes
if e.isjoint
line('XData', [0 0], ...
'YData', [0 0], ...
'ZData', 14*s*[-1 1], ...
'LineStyle', ':', 'Parent', h.element(i));
% create the joint axis label
text(0, 0, 14*s, sprintf('q%d', e.qvar), 'Parent', h.element(i))
end
end
% create the joint axis vector
if opt.jvec
if e.isjoint
daspect([1 1 1]);
ha = arrow3([0 0 -12*s], [0 0 15*s], 'c');
set(ha, 'Parent', h.element(i));
% create the joint axis label
text(0, 0, 20*s, sprintf('q%d', e.qvar), 'Parent', h.element(i))
end
end
end
% display the wrist coordinate frame
if opt.wrist
if opt.arrow
% compute arrow3 scale factor...
d = axis(gca);
if length(d) == 4
d = norm( d(3:4)-d(1:2) ) / 72;
else
d = norm( d(4:6)-d(1:3) ) / 72;
end
extra = {'arrow', true, 'LineWidth', 1.5*s/d};
else
extra = {};
end
h.wrist = plottform(eye(3,3), 'labels', upper(opt.wristlabel), ...
'color', 'k', 'length', opt.wristlen*s, extra{:});
else
h.wrist = [];
end
xlabel('X')
ylabel('Y')
zlabel('Z')
grid on
% deal with some display options
if opt.shading
lighting gouraud
light('position', opt.lightpos)
end
% restore hold setting
if ~ish
hold off
end
h.opt = opt;
h.ets = ets;
if nargout > 0
h_ = h;
end
% attach the handle structure to the top graphical element
h.q = q;
set(group, 'UserData', h);
end
end
methods (Static)
function obj = Rx(varargin)
%Rx Construct ETS3 object for rotation around x axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Rx', varargin{:});
end
function obj = Ry(varargin)
%Ry Construct ETS3 object for rotation around y axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Ry', varargin{:});
end
function obj = Rz(varargin)
%Rz Construct ETS3 object for rotation around z axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Rz', varargin{:});
end
function obj = Tx(varargin)
%Tx Construct ETS3 object for translation along x axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Tx', varargin{:});
end
function obj = Ty(varargin)
%Ty Construct ETS3 object for translation along y axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Ty', varargin{:});
end
function obj = Tz(varargin)
%Tz Construct ETS3 object for translation along z axis
[varargin{:}] = convertStringsToChars(varargin{:});
obj = ETS3('Tz', varargin{:});
end
end
end